OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1340–1349

Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging

Tyler B. Rice, Soren D. Konecky, Christopher Owen, Bernard Choi, and Bruce J. Tromberg  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 6, pp. 1340-1349 (2012)
http://dx.doi.org/10.1364/BOE.3.001340


View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser Speckle Imaging (LSI) is fast, noninvasive technique to image particle dynamics in scattering media such as biological tissue. While LSI measurements are independent of the overall intensity of the laser source, we find that spatial variations in the laser source profile can impact measured flow rates. This occurs due to differences in average photon path length across the profile, and is of significant concern because all lasers have some degree of natural Gaussian profile in addition to artifacts potentially caused by projecting optics. Two in vivo measurement are performed to show that flow rates differ based on location with respect to the beam profile. A quantitative analysis is then done through a speckle contrast forward model generated within a coherent Spatial Frequency Domain Imaging (cSFDI) formalism. The model predicts remitted speckle contrast as a function of spatial frequency, optical properties, and scattering dynamics. Comparison with experimental speckle contrast images were done using liquid phantoms with known optical properties for three common beam shapes. cSFDI is found to accurately predict speckle contrast for all beam shapes to within 5% root mean square error. Suggestions for improving beam homogeneity are given, including a widening of the natural beam Gaussian, proper diffusing glass spreading, and flat top shaping using microlens arrays.

© 2012 OSA

OCIS Codes
(110.6150) Imaging systems : Speckle imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Diffuse Optical Imaging

History
Original Manuscript: February 3, 2012
Revised Manuscript: April 7, 2012
Manuscript Accepted: April 23, 2012
Published: May 11, 2012

Citation
Tyler B. Rice, Soren D. Konecky, Christopher Owen, Bernard Choi, and Bruce J. Tromberg, "Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging," Biomed. Opt. Express 3, 1340-1349 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-6-1340


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, Mineola, NY, 2000).
  2. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, New York, 1985).
  3. A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, New York, 2010).
  4. G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng.BME-27(10), 597–604 (1980). [CrossRef] [PubMed]
  5. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt.33(16), 3549–3558 (1994). [CrossRef] [PubMed]
  6. P. A. Oberg, “Laser-Doppler flowmetry,” Crit. Rev. Biomed. Eng.18(2), 125–163 (1990). [PubMed]
  7. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988). [CrossRef] [PubMed]
  8. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990). [CrossRef]
  9. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(4), 3350–3358 (1995). [CrossRef] [PubMed]
  10. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14(1), 192–215 (1997). [CrossRef]
  11. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004). [CrossRef] [PubMed]
  12. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981). [CrossRef]
  13. J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt.4(1), 164–175 (1999). [CrossRef]
  14. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093111 (2005). [CrossRef]
  15. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109–011112 (2010). [CrossRef] [PubMed]
  16. R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quant. Spectrosc. Radiat. Transf.52(6), 713–727 (1994). [CrossRef]
  17. D. Cuccia, B. Tromberg, R. Frostig, and D. Abookasis, “Quantitative in vivo imaging of tissue absorption, scattering, and hemoglobin concentration in rat cortex using spatially modulated structured light,” in In vivo Optical Imaging of Brain Function, 2nd ed. (CRC Press, 2009).
  18. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009). [CrossRef] [PubMed]
  19. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005). [CrossRef] [PubMed]
  20. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009). [CrossRef] [PubMed]
  21. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010). [CrossRef] [PubMed]
  22. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009). [CrossRef]
  23. J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011). [CrossRef] [PubMed]
  24. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011). [CrossRef] [PubMed]
  25. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2(6), 1553–1563 (2011). [CrossRef] [PubMed]
  26. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., Englewood, Colo., 2007).
  27. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett.31(23), 3465–3467 (2006). [CrossRef] [PubMed]
  28. A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B Condens. Matter43(7), 5934–5938 (1991). [CrossRef] [PubMed]
  29. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter65(4), 409–413 (1987). [CrossRef]
  30. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A25(1), 9–15 (2008). [CrossRef] [PubMed]
  31. S. Prahl, “Drop-dead simple Monte Carlo codes,” retrieved May 1, 2010, http://omlc.ogi.edu/software/mc/ .
  32. R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, 71020J, 71020J-12 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited