OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1350–1364

Microfluidics based phantoms of superficial vascular network

Long Luu, Patrick A. Roman, Scott A. Mathews, and Jessica C. Ramella-Roman  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1350-1364 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1376 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Several new bio-photonic techniques aim to measure flow in the human vasculature non-destructively. Some of these tools, such as laser speckle imaging or Doppler optical coherence tomography, are now reaching the clinical stage. Therefore appropriate calibration and validation techniques dedicated to these particular measurements are therefore of paramount importance. In this paper we introduce a fast prototyping technique based on laser micromachining for the fabrication of dynamic flow phantoms. Micro-channels smaller than 20 µm in width can be formed in a variety of materials such as epoxies, plastics, and household tape. Vasculature geometries can be easily and quickly modified to accommodate a particular experimental scenario.

© 2012 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: March 21, 2012
Revised Manuscript: April 25, 2012
Manuscript Accepted: April 25, 2012
Published: May 14, 2012

Virtual Issues
Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices (2012) Biomedical Optics Express
July 3, 2012 Spotlight on Optics

Long Luu, Patrick A. Roman, Scott A. Mathews, and Jessica C. Ramella-Roman, "Microfluidics based phantoms of superficial vascular network," Biomed. Opt. Express 3, 1350-1364 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. H. Lipowsky and B. W. Zweifach, “Network analysis of microcirculation of cat mesentery,” Microvasc. Res.7(1), 73–83 (1974). [CrossRef] [PubMed]
  2. S. S. Kety and C. F. Schmidt, “The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values,” J. Clin. Invest.27(4), 476–483 (1948). [CrossRef]
  3. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997). [CrossRef] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997). [CrossRef] [PubMed]
  5. J. E. Grunwald, J. DuPont, and C. E. Riva, “Retinal haemodynamics in patients with early diabetes mellitus,” Br. J. Ophthalmol.80(4), 327–331 (1996). [CrossRef] [PubMed]
  6. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature407(6801), 249–257 (2000). [CrossRef] [PubMed]
  7. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005). [PubMed]
  8. Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010). [CrossRef] [PubMed]
  9. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express17(16), 13904–13917 (2009). [CrossRef] [PubMed]
  10. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012). [CrossRef] [PubMed]
  11. A. Ponticorvo and A. K. Dunn, “Simultaneous imaging of oxygen tension and blood flow in animals using a digital micromirror device,” Opt. Express18(8), 8160–8170 (2010). [CrossRef] [PubMed]
  12. C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol.11(11), 936–944 (1972). [PubMed]
  13. G. T. Feke and C. E. Rivat, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am.68(4), 526–531 (1978). [CrossRef] [PubMed]
  14. M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997). [CrossRef] [PubMed]
  15. M. R. Hatab, C. A. Giller, and G. D. Clarke, “Evaluation of cerebral arterial flow with transcranial Doppler ultrasound: theoretical development and phantom studies,” Ultrasound Med. Biol.23(7), 1025–1031 (1997). [CrossRef] [PubMed]
  16. D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010). [CrossRef] [PubMed]
  17. A. S. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010). [CrossRef] [PubMed]
  18. J. Yao, K. I. Maslov, Y. Shi, L. A. Taber, and L. V. Wang, “In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth,” Opt. Lett.35(9), 1419–1421 (2010). [CrossRef] [PubMed]
  19. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001). [CrossRef] [PubMed]
  20. S. L. Chen, T. Ling, S. W. Huang, H. Won Baac, and L. J. Guo, “Photoacoustic correlation spectroscopy and its application to low-speed flow measurement,” Opt. Lett.35(8), 1200–1202 (2010). [CrossRef] [PubMed]
  21. D. D. Duncan, S. J. Kirkpatrick, J. C. Gladish, and S. A. Hurst, “Laser speckle contrast imaging for the quantitative assessment of flow,” Proc. SPIE7176(717603), 717603, 717603-8 (2009). [CrossRef]
  22. P. Lemaillet and J. C. Ramella-Roman, “Dynamic eye phantom for retinal oximetry measurements,” J. Biomed. Opt.14(6), 064008 (2009). [CrossRef] [PubMed]
  23. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010). [CrossRef] [PubMed]
  24. P. Tabeling, Introduction to Microfluidics (Oxford University, New York, 2005).
  25. N. T. Nguyen and S. Wereley, Fundamentals and Applications of Microfluidics (Artech House: Boston, MA, 2002).
  26. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998). [CrossRef] [PubMed]
  27. V. Linder, H. K. Wu, X. Y. Jiang, and G. M. Whitesides, “Rapid prototyping of 2D structures with feature sizes larger than 8 microm,” Anal. Chem.75(10), 2522–2527 (2003). [CrossRef] [PubMed]
  28. N. Bao, Q. Zhang, J. J. Xu, and H. Y. Chen, “Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer,” J. Chromatogr. A1089(1-2), 270–275 (2005). [CrossRef] [PubMed]
  29. V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006). [CrossRef] [PubMed]
  30. J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002). [CrossRef] [PubMed]
  31. P. K. Yuen and V. N. Goral, “Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter,” Lab Chip10(3), 384–387 (2010). [CrossRef] [PubMed]
  32. D. A. Bartholomeusz, R. W. Boutte, and J. D. Andrade, “Xurography: rapid prototyping of microstructures using a cutting plotter,” J. Microelectromech. Syst.14(6), 1364–1374 (2005). [CrossRef]
  33. H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip2(4), 242–246 (2002). [CrossRef] [PubMed]
  34. H. B. Liu and H. Q. Gong, “Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser,” J. Micromech. Microeng.19(3), 037002 (2009). [CrossRef]
  35. X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010). [CrossRef] [PubMed]
  36. P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010). [CrossRef] [PubMed]
  37. L.W. Luo, C.Y. Teo, W.L. Ong, K.C. Tang, L.F. Cheow and L. Yobas, “Rapid prototyping of microfluidic systems using a laser-patterned tape,” J. Micromech. Microeng. 17, N107–N111 (2007).
  38. A. B. Parthasarathy, W. G. Shin, X. J. Zhang, and A. K. Dunn, “Laser speckle contrast imaging of flow in a microfluidic device,” Proc. SPIE6446, 644604, 644604-11 (2007). [CrossRef]
  39. S. A. Mathews, M. Mirotznik, B. L. Good, and A. Piqué, “Rapid prototyping of frequency selective surfaces by laser direct-write,” Proc. SPIE6458, 64580R, 64580R-14 (2007). [CrossRef]
  40. A. Piqué, H. Kim, R. Auyeung, J. Wang, A. Birnbaum, and S. Mathews, “Laser-based digital microfabrication,” in NIP25: International Conference on Digital Printing Technologies and Digital Fabrication (2009).
  41. S. A. Mathews, M. Mirotznik, and A. Piqué, “Development of novel RF and millimeter wave structures by laser direct-write,” in Proceedings of LAMP2009—the 5th International Congress on Laser Advanced Materials Processing (2009).
  42. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007). [CrossRef]
  43. S. A. Prahl, “Light transport in tissue,” Ph.D. thesis (University of Texas at Austin, 1988).
  44. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001). [CrossRef] [PubMed]
  45. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004). [CrossRef] [PubMed]
  46. S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995). [PubMed]
  47. J. W. Goodman, “Statistical properties of laser speckle,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer, Berlin, 1995).
  48. J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophthalmol. Vis. Sci.22(2), 255–259 (1982). [PubMed]
  49. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A25(8), 2088–2094 (2008). [CrossRef] [PubMed]
  50. K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1996).
  51. S. J. Preece and E. Claridge, “Monte Carlo modelling of the spectral reflectance of the human eye,” Phys. Med. Biol.47(16), 2863–2877 (2002). [CrossRef] [PubMed]
  52. A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor,” Sens. Actuators A Phys.88(2), 121–132 (2001). [CrossRef]
  53. A. Rasmussen and M. E. Zaghloul, “In the flow with MEMS,” IEEE Circuits Devices Mag.14(4), 12–25 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited