OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1365–1380

Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy

Corinne Berclaz, Joan Goulley, Martin Villiger, Christophe Pache, Arno Bouwens, Erica Martin-Williams, Dimitri Van de Ville, Anthony C. Davison, Anne Grapin-Botton, and Theo Lasser  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 6, pp. 1365-1380 (2012)
http://dx.doi.org/10.1364/BOE.3.001365


View Full Text Article

Acrobat PDF (5785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diabetes is characterized by hyperglycemia that can result from the loss of pancreatic insulin secreting β-cells in the islets of Langerhans. We analyzed ex vivo the entire gastric and duodenal lobes of a murine pancreas using extended-focus Optical Coherence Microscopy (xfOCM). To identify and quantify the islets of Langerhans observed in xfOCM tomograms we implemented an active contour algorithm based on the level set method. We show that xfOCM reveals a three-dimensional islet distribution consistent with Optical Projection Tomography, albeit with a higher resolution that also enables the detection of the smallest islets (≤ 8000 μm3). Although this category of the smallest islets represents only a negligible volume compared to the total β-cell volume, a recent study suggests that these islets, located at the periphery, are the first to be destroyed when type I diabetes develops. Our results underline the capability of xfOCM to contribute to the understanding of the development of diabetes, especially when considering islet volume distribution instead of the total β-cell volume only.

© 2012 OSA

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1420) Medical optics and biotechnology : Biology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: April 12, 2012
Revised Manuscript: May 7, 2012
Manuscript Accepted: May 10, 2012
Published: May 14, 2012

Citation
Corinne Berclaz, Joan Goulley, Martin Villiger, Christophe Pache, Arno Bouwens, Erica Martin-Williams, Dimitri Van de Ville, Anthony C. Davison, Anne Grapin-Botton, and Theo Lasser, "Diabetes imaging—quantitative assessment of islets of Langerhans distribution in murine pancreas using extended-focus optical coherence microscopy," Biomed. Opt. Express 3, 1365-1380 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-6-1365


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. American Diabetes Association“Diagnosis and classification of diabetes mellitus,” Diabetes Care34, S62–S69 (2011). [PubMed]
  2. J. A. Bluestone, K. Herold, and G. Eisenbarth, “Genetics, pathogenesis and clinical interventions in type 1 diabetes,” Nature464, 1293–1300 (2010). [CrossRef] [PubMed]
  3. Y. Lin and S. Zhongjie, “Current views on type 2 diabetes,” J. Endocrinol.204, 1–11 (2010). [CrossRef]
  4. P. F. Antkowiak, M. H. Vandsburger, and F. H. Epstein, “Quantitative pancreatic β cell MRI using manganese-enhanced look-locker imaging and two-site water exchange analysis,” Magn. Reson. Med. (Aug.16, 2011) (e-pub ahead of print).
  5. F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest.116, 1506–1513 (2006). [CrossRef] [PubMed]
  6. D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med.51, 1059–1067 (2010). [CrossRef] [PubMed]
  7. M. Brom, K. Andralojć, W. J. G. Oyen, O. C. Boerman, and M. Gotthardt, “Development of radiotracers for the determination of the beta-cell mass in vivo,” Curr. Pharm. Design16, 1561–1567 (2010). [CrossRef]
  8. L. R. Nyman, E. Ford, A. C. Powers, and D. W. Piston, “Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo,” Am. J. Physiol.-Endoc. M.298, E807–E814 (2010).
  9. M. M. Martinic and M. G. von Herrath, “Real-time imaging of the pancreas during development of diabetes,” Immunol. Rev.221, 200–213 (2008). [CrossRef] [PubMed]
  10. T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods4, 31–33 (2007). [CrossRef]
  11. T. Alanentalo, C. E. Lorén, A. Larefalk, J. Sharpe, D. Holmberg, and U. Ahlgren, “High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas,” J. Biomed. Opt.13, 054070 (2008). [CrossRef] [PubMed]
  12. M. Hara, R. F. Dizon, B. S. Glick, C. S. Lee, K. H. Kaestner, D. W. Piston, and V. P. Bindokas, “Imaging pancreatic β-cells in the intact pancreas,” Am. J. Physiol. Endocrinol. Metab.290, E1041–E1047 (2006). [CrossRef]
  13. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66, 239–303 (2003). [CrossRef]
  14. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21, 1361–1367 (2003). [CrossRef] [PubMed]
  15. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19, 590–592 (1994). [CrossRef] [PubMed]
  16. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human pancreatobiliary tissue using optical coherence tomography,” Digest. Dis. Sci.43, 1193–1199 (1998). [CrossRef] [PubMed]
  17. P. A. Testoni, B. Mangiavillano, L. Albarello, A. Mariani, P. G. Arcidiacono, E. Masci, and C. Doglioni, “Optical coherence tomography compared with histology of the main pancreatic duct structure in normal and pathological conditions: an ex vivo study,” Digest. Liver Dis.38, 688–695 (2006). [CrossRef]
  18. N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express2, 2372–2382 (2011). [CrossRef] [PubMed]
  19. R. A. Leitgeb, M. Villiger, A. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31, 2450–2452 (2006). [CrossRef] [PubMed]
  20. M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia52, 1599–1607 (2009). [CrossRef] [PubMed]
  21. M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Design16, 1595–1608 (2010). [CrossRef]
  22. M. S. Anderson and J. A. Bluestone, “The NOD mouse: a model of immune dysregulation,” Annu. Rev. Immunol.23, 447–485 (2005). [CrossRef] [PubMed]
  23. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express14, 1862–1877 (2006). [CrossRef] [PubMed]
  24. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18, 19413–19428 (2010). [CrossRef] [PubMed]
  25. I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,” Pattern Recogn.44, 1590–1603 (2011). [CrossRef]
  26. A. Hörnblad, A. Cheddad, and U. Ahlgren, “An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution,” Islets3, 1–5 (2011). [CrossRef]
  27. H. Nagai, “Configurational anatomy of the pancreas: its surgical relevance from ontogenetic and comparative-anatomical viewpoints,” J. Hepatobiliary Pancreat, Surg, (10, 48–56 (2003).
  28. L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol.174, 6477–6489 (2005). [PubMed]
  29. T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process.10, 266–277 (2001). [CrossRef]
  30. S. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer-Verlag, 2003).
  31. R. T. Whitaker, “A level-set approach to 3D reconstruction from range data,” Int. J. Comput. Vision29, 203–231 (1998). [CrossRef]
  32. S. Lankton, “Sparse Field Methods,” Technical Report, Georgia Institute of Technology (July6, 2009).
  33. J. Malcolm, Y. Rathi, A. Yezzi, and A. Tannenbaum, “Fast approximate surface evolution in arbitrary dimension,” Proc. SPIE6914, 69144C (2008). [CrossRef]
  34. A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Application (Cambridge University Press, 1997).
  35. T. Bock, K. Svenstrup, B. Pakkenberg, and K. Buschard, “Unbiased estimation of total β-cell number and mean β-cell volume in rodent pancreas,” APMIS107, 791–799 (1999). [CrossRef] [PubMed]
  36. A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical data,” SIAM Rev.51, 661–703 (2009). [CrossRef]
  37. T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, A. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes59, 1756–1764 (2010). [CrossRef] [PubMed]
  38. T. Bock, B. Pakkenberg, and K. Buschard, “Genetic background determines the size and structure of the endocrine pancreas,” Diabetes54, 133–137 (2005). [CrossRef]
  39. E. M. Akirav, M.-T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner, D. L. Rimm, and K. C. Herold, “Glucose and inflammation control islet vascular density and β-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes60, 876–883 (2011). [CrossRef] [PubMed]
  40. P.-O. Bastien-Dionne, L. Valenti, N. Kon, W. Gu, and J. Buteau, “Glucagon-like peptide 1 inhibits the sirtuin deacetylase SirT1 to stimulate pancreatic β-cell mass expansion,” Diabetes60, 3217–3222 (2011). [CrossRef] [PubMed]
  41. S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata, and K. Yokono, “Upregulation of the mammalian target of rapamycin complex 1 pathway by ras homolog enriched in brain in pancreatic β-cells leads to increased β-cell mass and prevention of hyperglycemia,” Diabetes58, 1321–1332 (2009). [CrossRef] [PubMed]
  42. M. Riopel, M. Krishnamurthy, J. Li, S. Liu, A. Leask, and R. Wang, “Conditional β1-integrin-deficient mice display impaired pancreatic β cell function,” J. Pathol.224, 45–55 (2011). [CrossRef] [PubMed]
  43. P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE4, e5063 (2009). [CrossRef] [PubMed]
  44. D. Choi, E. P. Cai, S. A. Schroer, L. Wang, and M. Woo, “Vhl is required for normal pancreatic β cell function and the maintenance of β cell mass with age in mice,” Lab. Invest.91, 527–538 (2011). [CrossRef] [PubMed]
  45. M. Chintinne, G. Stangé, B. Denys, P. In ’t Veld, K. Hellemans, M. Pipeleers-Marichal, Z. Ling, and D. Pipeleers, “Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas,” Diabetologia53, 2380–2388 (2010). [CrossRef] [PubMed]
  46. M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy.” J. Histochem. Cytochem.53, 1087–1097 (2005). [CrossRef] [PubMed]
  47. D. Bosco, M. Armanet, P. Morel, N. Niclauss, A. Sgroi, Y. D. Muller, L. Giovannoni, and T. Berney, “Unique Arrangement of α- and β-cells in Human Islets of Langerhans,” Diabetes59, 1202–1210 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited