OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1433–1445

Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds

Ronald X. Xu, David W. Allen, Jiwei Huang, Surya Gnyawali, James Melvin, Haytham Elgharably, Gayle Gordillo, Kun Huang, Valerie Bergdall, Maritoni Litorja, Joseph P. Rice, Jeeseong Hwang, and Chandan K. Sen  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 6, pp. 1433-1445 (2012)
http://dx.doi.org/10.1364/BOE.3.001433


View Full Text Article

Enhanced HTML    Acrobat PDF (1489 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hyperspectral imaging has the potential to achieve high spatial resolution and high functional sensitivity for non-invasive assessment of tissue oxygenation. However, clinical acceptance of hyperspectral imaging in ischemic wound assessment is hampered by its poor reproducibility, low accuracy, and misinterpreted biology. These limitations are partially caused by the lack of a traceable calibration standard. We proposed a digital tissue phantom (DTP) platform for quantitative calibration and performance evaluation of spectral wound imaging devices. The technical feasibility of such a DTP platform was demonstrated by both in vitro and in vivo experiments. The in vitro DTPs were developed based on a liquid blood phantom model. The in vivo DTPs were developed based on a porcine ischemic skin flap model. The DTPs were projected by a Hyperspectral Image Projector (HIP) with high fidelity. A wide-gap 2nd derivative oxygenation algorithm was developed to reconstruct tissue functional parameters from hyperspectral measurements. In this study, we have demonstrated not only the technical feasibility of using DTPs for quantitative calibration, evaluation, and optimization of spectral imaging devices but also its potential for ischemic wound assessment in clinical practice.

© 2012 OSA

OCIS Codes
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Calibration, Validation and Phantom Studies

History
Original Manuscript: March 2, 2012
Revised Manuscript: May 3, 2012
Manuscript Accepted: May 4, 2012
Published: May 18, 2012

Virtual Issues
Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices (2012) Biomedical Optics Express

Citation
Ronald X. Xu, David W. Allen, Jiwei Huang, Surya Gnyawali, James Melvin, Haytham Elgharably, Gayle Gordillo, Kun Huang, Valerie Bergdall, Maritoni Litorja, Joseph P. Rice, Jeeseong Hwang, and Chandan K. Sen, "Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds," Biomed. Opt. Express 3, 1433-1445 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-6-1433


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009). [CrossRef] [PubMed]
  2. C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair Regen.17(1), 1–18 (2009). [CrossRef] [PubMed]
  3. L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007). [CrossRef] [PubMed]
  4. S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003). [PubMed]
  5. R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:. [CrossRef] [PubMed]
  6. J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012). [CrossRef]
  7. D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011). [CrossRef]
  8. S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009). [CrossRef] [PubMed]
  9. A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express18(4), 3244–3257 (2010). [CrossRef] [PubMed]
  10. J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998). [CrossRef] [PubMed]
  11. M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001). [CrossRef] [PubMed]
  12. K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem.74(9), 2021–2028 (2002). [CrossRef] [PubMed]
  13. C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996). [CrossRef] [PubMed]
  14. D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005). [CrossRef] [PubMed]
  15. I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011). [CrossRef] [PubMed]
  16. T. T. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance—historical and present ideas,” Prog. Retin. Eye Res.22(2), 171–200 (2003). [CrossRef] [PubMed]
  17. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited