OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 6 — Jun. 1, 2012
  • pp: 1446–1454

In situ three-dimensional monitoring of collagen fibrillogenesis using SHG microscopy

S. Bancelin, C. Aimé, T. Coradin, and M.-C. Schanne-Klein  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 6, pp. 1446-1454 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1044 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We implemented in situ time-lapse Second Harmonic Generation (SHG) microscopy to monitor the three-dimensional (3D) self-assembly of collagen in solution. As a proof of concept, we tuned the kinetics of fibril formation by varying the pH and measured the subsequent exponential increase of fibril volume density in SHG images. We obtained significantly different time constants at pH = 6.5 ± 0.3 and at pH = 7.5 ± 0.3. Moreover, we showed that we could focus on the growth of a single isolated collagen fibril because SHG microscopy is sensitive to well-organized fibrils with diameter below the optical resolution. This work illustrates the potential of SHG microscopy for the rational design and characterization of collagen-based biomaterials.

© 2012 OSA

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4180) Nonlinear optics : Multiphoton processes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(180.4315) Microscopy : Nonlinear microscopy
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:

Original Manuscript: April 18, 2012
Revised Manuscript: May 16, 2012
Manuscript Accepted: May 16, 2012
Published: May 21, 2012

S. Bancelin, C. Aimé, T. Coradin, and M.-C. Schanne-Klein, "In situ three-dimensional monitoring of collagen fibrillogenesis using SHG microscopy," Biomed. Opt. Express 3, 1446-1454 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Birk and P. Bruckner, “Collagen suprastructures,” Top. Curr. Chem.247, 185–205 (2005).
  2. M.-M. Giraud-Guille, L. Besseau, and R. Martin, “Liquid crystalline assemblies of collagen in bone and in vitro systems,” J. Biomech.36(10), 1571–1579 (2003). [CrossRef] [PubMed]
  3. S. Köster, H. M. Evans, J. Y. Wong, and T. Pfohl, “An in situ study of collagen self-assembly processes,” Biomacromolecules9(1), 199–207 (2008). [CrossRef] [PubMed]
  4. C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007). [CrossRef] [PubMed]
  5. J. R. Harris and A. Reiber, “Influence of saline and pH on collagen type I fibrillogenesis in vitro: fibril polymorphism and colloidal gold labelling,” Micron38(5), 513–521 (2007). [CrossRef] [PubMed]
  6. F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008). [CrossRef] [PubMed]
  7. F. Z. Jiang, H. Hörber, J. Howard, and D. J. Müller, “Assembly of collagen into microribbons: effects of pH and electrolytes,” J. Struct. Biol.148(3), 268–278 (2004). [CrossRef] [PubMed]
  8. T. Starborg, Y. Lu, K. E. Kadler, and D. F. Holmes, “Electron microscopy of collagen fibril—structure in vitro and in vivo including three-dimensional reconstruction,” in Methods in Cell Biology (Elsevier, 2008), Vol. 88, 319–345.
  9. V. K. Yadavalli, D. V. Svintradze, and R. M. Pidaparti, “Nanoscale measurements of the assembly of collagen to fibrils,” Int. J. Biol. Macromol.46(4), 458–464 (2010). [CrossRef] [PubMed]
  10. D. A. Cisneros, C. Hung, C. M. Franz, and D. J. Muller, “Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy,” J. Struct. Biol.154(3), 232–245 (2006). [CrossRef] [PubMed]
  11. A. O. Brightman, B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson, and S. L. Voytik-Harbin, “Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro,” Biopolymers54(3), 222–234 (2000). [CrossRef] [PubMed]
  12. Y. L. Yang and L. J. Kaufman, “Rheology and confocal reflectance microscopy as probes of mechanical properties and structure during collagen and collagen/hyaluronan self-assembly,” Biophys. J.96(4), 1566–1585 (2009). [CrossRef] [PubMed]
  13. K. Wolf, S. Alexander, V. Schacht, L. M. Coussens, U. H. von Andrian, J. van Rheenen, E. Deryugina, and P. Friedl, “Collagen-based cell migration models in vitro and in vivo,” Semin. Cell Dev. Biol.20(8), 931–941 (2009). [CrossRef] [PubMed]
  14. I. Freund and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Opt. Lett.11(2), 94–96 (1986). [CrossRef] [PubMed]
  15. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002). [CrossRef] [PubMed]
  16. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002). [CrossRef] [PubMed]
  17. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  18. M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express15(7), 4054–4065 (2007). [CrossRef] [PubMed]
  19. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  20. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J.90(2), 693–703 (2006). [CrossRef] [PubMed]
  21. A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B113(40), 13437–13445 (2009). [CrossRef] [PubMed]
  22. A. Deniset-Besseau, P. De Sa Peixoto, G. Mosser, and M.-C. Schanne-Klein, “Nonlinear optical imaging of lyotropic cholesteric liquid crystals,” Opt. Express18(2), 1113–1121 (2010). [CrossRef] [PubMed]
  23. A.-M. Pena, T. Boulesteix, T. Dartigalongue, and M.-C. Schanne-Klein, “Chiroptical effects in the second harmonic signal of collagens I and IV,” J. Am. Chem. Soc.127(29), 10314–10322 (2005). [CrossRef] [PubMed]
  24. C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” J. Appl. Phys.105(10), 102042 (2009). [CrossRef]
  25. A.-M. Pena, D. Fagot, C. Olive, J.-F. Michelet, J.-B. Galey, F. Leroy, E. Beaurepaire, J.-L. Martin, A. Colonna, and M.-C. Schanne-Klein, “Multiphoton microscopy of engineered dermal substitutes: assessment of 3-D collagen matrix remodeling induced by fibroblast contraction,” J. Biomed. Opt.15(5), 056018 (2010). [CrossRef] [PubMed]
  26. M.-M. Giraud-Guille, L. Besseau, D. Herbage, and P. Gounon, “Optimization of Collagen Liquid-Crystalline Assemblies - Influence of Sonic Fragmentation,” J. Struct. Biol.113(2), 99–106 (1994). [CrossRef]
  27. I. Gusachenko, V. Tran, Y. G. Houssen, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic microscopy in tendon upon mechanical stretching,” Biophys. J.102(9), 2220–2229 (2012). [CrossRef]
  28. G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M.-C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express3(1), 1–15 (2012). [CrossRef] [PubMed]
  29. M.-M. Giraud Guille, C. Helary, S. Vigier, and N. Nassif, “Dense fibrillar collagen matrices for tissue repair,” Soft Matter6(20), 4963–4967 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited