OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1534–1547

Highly sensitive detection of cancer cells using femtosecond dual-wavelength near-IR two-photon imaging

Jean R. Starkey, Nikolay S. Makarov, Mikhail Drobizhev, and Aleksander Rebane  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 7, pp. 1534-1547 (2012)
http://dx.doi.org/10.1364/BOE.3.001534


View Full Text Article

Enhanced HTML    Acrobat PDF (1477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe novel imaging protocols that allow detection of small cancer cell colonies deep inside tissue phantoms with high sensitivity and specificity. We compare fluorescence excited in Styryl-9M molecules by femtosecond pulses at near IR wavelengths, where Styryl-9M shows the largest dependence of the two-photon absorption (2PA) cross section on the local environment. We show that by calculating the normalized ratio of the two-photon excited fluorescence (2PEF) intensity at 1200 nm and 1100 nm excitation wavelengths we can achieve high sensitivity and specificity for determining the location of cancer cells surrounded by normal cells. The 2PEF results showed a positive correlation with the levels of MDR1 proteins expressed by the cells, and, for high MDR1 expressors, as few as ten cancer cells could be detected. Similar high sensitivity is also demonstrated for tumor colonies induced in mouse external ears. This technique could be useful in early cancer detection, and, perhaps, also in monitoring dormant cancer deposits.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: May 10, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: June 1, 2012
Published: June 6, 2012

Citation
Jean R. Starkey, Nikolay S. Makarov, Mikhail Drobizhev, and Aleksander Rebane, "Highly sensitive detection of cancer cells using femtosecond dual-wavelength near-IR two-photon imaging," Biomed. Opt. Express 3, 1534-1547 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-7-1534


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract.20(5), 397–415 (2011). [CrossRef] [PubMed]
  2. J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003). [PubMed]
  3. P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005). [CrossRef] [PubMed]
  4. M. T. Weigel and M. Dowsett, “Current and emerging biomarkers in breast cancer: prognosis and prediction,” Endocr. Relat. Cancer17(4), R245–R262 (2010). [CrossRef] [PubMed]
  5. K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001). [CrossRef] [PubMed]
  6. S. Achilefu, “Lighting up tumors with receptor-specific optical molecular probes,” Technol. Cancer Res. Treat.3(4), 393–409 (2004). [PubMed]
  7. S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010). [CrossRef] [PubMed]
  8. J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt.6(2), 122–133 (2001). [CrossRef] [PubMed]
  9. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000). [CrossRef] [PubMed]
  10. L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem.13(3), 554–560 (2002). [CrossRef] [PubMed]
  11. F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011). [CrossRef] [PubMed]
  12. C. G. Hadjipanayis, H. Jiang, D. W. Roberts, and L. Yang, “Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening,” Semin. Oncol.38(1), 109–118 (2011). [CrossRef] [PubMed]
  13. N. Almog, “Molecular mechanisms underlying tumor dormancy,” Cancer Lett.294(2), 139–146 (2010). [CrossRef] [PubMed]
  14. O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).
  15. P. O. Brown and C. Palmer, “The preclinical natural history of serous ovarian cancer: defining the target for early detection,” PLoS Med.6(7), e1000114 (2009). [CrossRef] [PubMed]
  16. H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009). [CrossRef] [PubMed]
  17. A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008). [CrossRef] [PubMed]
  18. M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009). [CrossRef] [PubMed]
  19. N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011). [CrossRef] [PubMed]
  20. C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. Rasko, and A. Khatri, “Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” Stem Cells28(9), 1686–1702 (2010). [CrossRef] [PubMed]
  21. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008). [CrossRef] [PubMed]
  22. N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008). [CrossRef]
  23. A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010). [CrossRef]
  24. V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006). [CrossRef] [PubMed]
  25. R. Ramadass and J. Bereiter-Hahn, ““Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays,” J. Phys. B111(26), 7681–7690 (2007). [CrossRef]
  26. R. B. Owens, H. S. Smith, and A. J. Hackett, “Epithelial cell cultures from normal glandular tissue of mice,” J. Natl. Cancer Inst.53(1), 261–269 (1974). [PubMed]
  27. K. G. Danielson, L. W. Anderson, and H. L. Hosick, “Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo,” Cancer Res.40(6), 1812–1819 (1980). [PubMed]
  28. L. W. Anderson, K. G. Danielson, and H. L. Hosick, “Metastatic potential of hyperplastic alveolar nodule derived mouse mammary tumor cells following intravenous inoculation,” Eur. J. Cancer Clin. Oncol.17(9), 1001–1008 (1981). [CrossRef] [PubMed]
  29. S. L. Schor, “Cell proliferation and migration on collagen substrata in vitro,” J. Cell Sci.41, 159–175 (1980). [PubMed]
  30. H. Birkedal-Hansen and K. Danø, “A sensitive collagenase assay using [3H] collagen labeled by reaction with pyridoxal phosphate and [3H] borohydride,” Anal. Biochem.115(1), 18–26 (1981). [CrossRef] [PubMed]
  31. R. C. Hallowes, E. S. Bone, and W. Jones, “A new dimension in the culture of human breast,” in Tissue Culture in Medical Research II, R. J. Richards and K. T. Rajan, eds. (Pergamon, Oxford, 1980), pp. 213-220.
  32. N. P. Robertson, J. R. Starkey, S. Hamner, and G. G. Meadows, “Tumor cell invasion of three-dimensional matrices of defined composition: evidence for a specific role for heparan sulfate in rodent cell lines,” Cancer Res.49(7), 1816–1823 (1989). [PubMed]
  33. W. Jones and H. L. Hosick, “Collagen concentration as a significant variable for growth and morphology of mouse mammary parenchyma in collagen matrix culture,” Cell Biol. Int. Rep.10(4), 277–286 (1986). [CrossRef] [PubMed]
  34. M. R. Lugo and F. J. Sharom, “Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site,” Biochemistry44(2), 643–655 (2005). [CrossRef] [PubMed]
  35. “Primer3,” http://frodo.wi.mit.edu/primer3/input.htm .
  36. “ImageJ,” http://rsbweb.nih.gov/ij/
  37. C. D. M. Fletcher, ed., Diagnostic Histopathology of Tumors (Churchill Livingstone, 2007).
  38. P. D. Eckford and F. J. Sharom, “P-glycoprotein (ABCB1) interacts directly with lipid-based anti-cancer drugs and platelet-activating factors,” Biochem. Cell Biol.84(6), 1022–1033 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited