OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1557–1564

Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit

Kenneth K. C. Lee, Adrian Mariampillai, Joe X. Z. Yu, David W. Cadotte, Brian C. Wilson, Beau A. Standish, and Victor X. D. Yang  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 7, pp. 1557-1564 (2012)
http://dx.doi.org/10.1364/BOE.3.001557


View Full Text Article

Enhanced HTML    Acrobat PDF (1235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: April 25, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: June 5, 2012
Published: June 7, 2012

Citation
Kenneth K. C. Lee, Adrian Mariampillai, Joe X. Z. Yu, David W. Cadotte, Brian C. Wilson, Beau A. Standish, and Victor X. D. Yang, "Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit," Biomed. Opt. Express 3, 1557-1564 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-7-1557


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003). [CrossRef] [PubMed]
  2. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007). [CrossRef] [PubMed]
  3. W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005). [PubMed]
  4. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  5. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  6. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. K. C. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010). [CrossRef] [PubMed]
  7. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009). [CrossRef] [PubMed]
  8. Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012). [CrossRef] [PubMed]
  9. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010). [CrossRef] [PubMed]
  10. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2(4), 764–770 (2011). [CrossRef] [PubMed]
  11. K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010). [CrossRef] [PubMed]
  12. J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011). [CrossRef] [PubMed]
  13. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  14. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. E. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  15. NVIDIA, “CUDA C Programming Guide Version 4.0,” May 2011.
  16. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  17. M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(4Suppl 4), iv43–iv46 (2006). [CrossRef] [PubMed]
  18. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009). [CrossRef] [PubMed]
  19. M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011). [CrossRef] [PubMed]
  20. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  21. X. Liu, K. Zhang, Y. Huang, and J. U. Kang, “Spectroscopic-speckle variance OCT for microvasculature detection and analysis,” Biomed. Opt. Express2(11), 2995–3009 (2011). [CrossRef] [PubMed]
  22. P. Neri, C. Mariotti, I. Arapi, E. Bambini, and A. Giovannini, “Anti vascular endothelial growth factor sequential therapy for neovascular age-related macular degeneration: is this the new deal?” Curr. Med. Res. Opin.28(3), 395–400 (2012). [CrossRef] [PubMed]
  23. N. Ibrahim, Y. Yu, W. R. Walsh, and J.-L. Yang, “Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review),” Oncol. Rep.27(5), 1303–1311 (2012). [PubMed]
  24. B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res.68(23), 9987–9995 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2487 KB)      QuickTime
» Media 2: AVI (2131 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited