OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1579–1593

In vivo layer-resolved characterization of oral dysplasia via nonlinear optical micro-spectroscopy

Kert Edward, Suimin Qiu, Vicente Resto, Susan McCammon, and Gracie Vargas  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 7, pp. 1579-1593 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2429 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical spectroscopy has proven to be a powerful technique for studying neoplastic transformation in epithelial tissue. Since specific intra-layer precancerous changes originate in the stratified layers of the oral mucosa, layer-resolved analysis will likely improve both our understanding of the mechanism of premalignant transformation, and clinical diagnostic outcomes. However, the native fluorescence signal in linear spectroscopy typically originates from a multi-layered focal volume. In this study, nonlinear spectroscopy was exploited for in vivo layer-resolved discrimination between normal and dysplastic tissue for the first time. Our results revealed numerous intra-layer specific differences.

© 2012 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5810) Medical optics and biotechnology : Scanning microscopy
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Optics in Cancer Research

Original Manuscript: January 31, 2012
Revised Manuscript: May 15, 2012
Manuscript Accepted: May 15, 2012
Published: June 12, 2012

Kert Edward, Suimin Qiu, Vicente Resto, Susan McCammon, and Gracie Vargas, "In vivo layer-resolved characterization of oral dysplasia via nonlinear optical micro-spectroscopy," Biomed. Opt. Express 3, 1579-1593 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. American Cancer Society, Cancer Facts & Fig. 2011 (2011).
  2. B. W. Stewart and P. Kleihues, eds., World Cancer Report 2003 (International Agency for Research on Cancer, 2003).
  3. B. W. Neville and T. A. Day, “Oral cancer and precancerous lesions,” CA Cancer J. Clin.52(4), 195–215 (2002). [CrossRef] [PubMed]
  4. O. Kujan, R. J. Oliver, A. Khattab, S. A. Roberts, N. Thakker, and P. Sloan, “Evaluation of a new binary system of grading oral epithelial dysplasia for prediction of malignant transformation,” Oral Oncol.42(10), 987–993 (2006). [CrossRef] [PubMed]
  5. H. Lumerman, P. Freedman, and S. Kerpel, “Oral epithelial dysplasia and the development of invasive squamous cell carcinoma,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.79(3), 321–329 (1995). [CrossRef] [PubMed]
  6. P. M. Speight, “Update on oral epithelial dysplasia and progression to cancer,” Head Neck Pathol.1(1), 61–66 (2007). [CrossRef] [PubMed]
  7. P. Nankivell and H. Mehanna, “Oral dysplasia: biomarkers, treatment, and follow-up,” Curr. Oncol. Rep.13(2), 145–152 (2011). [CrossRef] [PubMed]
  8. H. M. Mehanna, T. Rattay, J. Smith, and C. C. McConkey, “Treatment and follow-up of oral dysplasia—a systematic review and meta-analysis,” Head Neck31(12), 1600–1609 (2009). [CrossRef] [PubMed]
  9. J. E. Bouquot, P. M. Speight, and P. M. Farthing, “Epithelial dysplasia of the oral mucosa-Diagnostic problems and prognostic features,” Curr. Diagn. Pathol.12(1), 11–21 (2006). [CrossRef]
  10. M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues,” Cancer Res.65(4), 1180–1186 (2005). [CrossRef] [PubMed]
  11. I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res.14(8), 2396–2404 (2008). [CrossRef] [PubMed]
  12. D. Shin, N. Vigneswaran, A. Gillenwater, and R. Richards-Kortum, “Advances in fluorescence imaging techniques to detect oral cancer and its precursors,” Future Oncol.6(7), 1143–1154 (2010). [CrossRef] [PubMed]
  13. G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Ponsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenterol.96(9), 2633–2639 (2001). [CrossRef] [PubMed]
  14. J. A. Evans, J. M. Poneros, B. E. Bouma, J. Bressner, E. F. Halpern, M. Shishkov, G. Y. Lauwers, M. Mino-Kenudson, N. S. Nishioka, and G. J. Tearney, “Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus,” Clin. Gastroenterol. Hepatol.4(1), 38–43 (2006). [CrossRef] [PubMed]
  15. C. Y. Wang, H. K. Chiang, C. T. Chen, C. P. Chiang, Y. S. Kuo, and S. N. Chow, “Diagnosis of oral cancer by light-induced autofluorescence spectroscopy using double excitation wavelengths,” Oral Oncol.35(2), 144–150 (1999). [CrossRef] [PubMed]
  16. A. Gillenwater, R. Jacob, R. Ganeshappa, B. Kemp, A. K. El-Naggar, J. L. Palmer, G. Clayman, M. F. Mitchell, and R. Richards-Kortum, “Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence,” Arch. Otolaryngol. Head Neck Surg.124(11), 1251–1258 (1998). [PubMed]
  17. L. B. Lovat, K. Johnson, G. D. Mackenzie, B. R. Clark, M. R. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. M. Thorpe, D. Pickard, R. C. Fitzgerald, T. Fearn, I. J. Bigio, and S. G. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut55(8), 1078–1083 (2006). [CrossRef] [PubMed]
  18. L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med.16(5), 603–606, 1p, 606 (2010). [CrossRef] [PubMed]
  19. R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt.47(6), 825–834 (2008). [CrossRef] [PubMed]
  20. M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med.34(1), 25–38 (2004). [CrossRef] [PubMed]
  21. A. Amelink, H. J. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett.29(10), 1087–1089 (2004). [CrossRef] [PubMed]
  22. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  23. L. Coghlan, U. Utzinger, R. Drezek, D. Heintzelmann, A. Zuluaga, C. Brookner, R. Richards-Kortum, I. Gimenez-Conti, and M. Follen, “Optimal fluorescence excitation wavelengths for detection of squamous intra-epithelial neoplasia: results from an animal model,” Opt. Express7(12), 436–446 (2000). [CrossRef] [PubMed]
  24. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett.28(2), 120–122 (2003). [CrossRef] [PubMed]
  25. J. Sun, T. Shilagard, B. Bell, M. Motamedi, and G. Vargas, “In vivo multimodal nonlinear optical imaging of mucosal tissue,” Opt. Express12(11), 2478–2486 (2004). [CrossRef] [PubMed]
  26. G. Vargas, T. Shilagard, H. Ki-Hong, and S. McCammon, “Multiphoton autofluorescence microscopy and second harmonic generation microscopy of oral epithelial neoplasms,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009 (IEEE, 2009), pp.6611–6613.
  27. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A.104(49), 19494–19499 (2007). [CrossRef] [PubMed]
  28. S. Zhuo, J. Chen, X. Jiang, S. Xie, R. Chen, N. Cao, Q. Zou, and S. Xiong, “The layered-resolved microstructure and spectroscopy of mouse oral mucosa using multiphoton microscopy,” Phys. Med. Biol.52(16), 4967–4980 (2007). [CrossRef] [PubMed]
  29. J. A. Gardecki and M. Maroncelli, “Set of secondary emission standards for calibration of the spectral responsivity in emission spectroscopy,” Appl. Spectrosc.52(9), 1179–1189 (1998). [CrossRef]
  30. A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt. Express13(16), 6268–6274 (2005). [CrossRef] [PubMed]
  31. I. B. Gimenez-Conti and T. J. Slaga, “The hamster cheek pouch carcinogenesis model,” J. Cell. Biochem. Suppl.53(S17F), 83–90 (1993). [CrossRef] [PubMed]
  32. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002). [CrossRef] [PubMed]
  33. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,” Opt. Express14(10), 4395–4402 (2006). [CrossRef] [PubMed]
  34. S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J.82(5), 2811–2825 (2002). [CrossRef] [PubMed]
  35. M. Skala and N. Ramanujam, “Multiphoton redox ratio imaging for metabolic monitoring in vivo,” in Advanced Protocols in Oxidative Stress II (Humana Press 2010), Chap.11, http://www.springerprotocols.com/Abstract/doi/10.1007/978-1-60761-411-1_11 .
  36. J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues,” Biophys. J.93(3), 992–1007 (2007). [CrossRef] [PubMed]
  37. D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol.72(1), 103–113 (2000). [CrossRef] [PubMed]
  38. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996). [CrossRef] [PubMed]
  39. A. Uppal and P. K. Gupta, “Measurement of NADH concentration in normal and malignant human tissues from breast and oral cavity,” Biotechnol. Appl. Biochem.37(1), 45–50 (2003). [CrossRef] [PubMed]
  40. N. J. Durr, C. T. Weisspfennig, B. A. Holfeld, and A. Ben-Yakar, “Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues,” J. Biomed. Opt.16(2), 026008 (2011). [CrossRef] [PubMed]
  41. W. Zheng, D. Li, S. Li, Y. Zeng, Y. Yang, and J. Y. Qu, “Diagnostic value of nonlinear optical signals from collagen matrix in the detection of epithelial precancer,” Opt. Lett.36(18), 3620–3622 (2011). [CrossRef] [PubMed]
  42. Z. Zheng-Fei, L. Han-Ping, G. Zhou-Yi, Z. Shuang-Mu, Y. Bi-Ying, and D. Xiao-Yuan, “Second-harmonic generation as a DNA malignancy indicator of prostate glandular epithelial cells,” Chinese Phys. B19(4), 049501 (2010). [CrossRef]
  43. J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit esophageal tissue based on two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007). [CrossRef]
  44. D. C. G. De Veld, M. J. Witjes, H. J. Sterenborg, and J. L. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol.41(2), 117–131 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited