OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1594–1608

Background-free deep imaging by spatial overlap modulation nonlinear optical microscopy

Keisuke Isobe, Hiroyuki Kawano, Takanori Takeda, Akira Suda, Akiko Kumagai, Hideaki Mizuno, Atsushi Miyawaki, and Katsumi Midorikawa  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 7, pp. 1594-1608 (2012)
http://dx.doi.org/10.1364/BOE.3.001594


View Full Text Article

Enhanced HTML    Acrobat PDF (1877 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate how the resolution and imaging depth limitations of nonlinear optical microscopy can be overcome by modulating the spatial overlap between two-color pulses. We suppress out-of-focus signals, which limit the imaging depth, by a factor of 100, and enhance the lateral and axial resolution by factors of 1.6 and 1.4–1.8 respectively. Using spatial overlap modulation, we demonstrate background-free three-dimensional imaging of fixed mouse brain tissue at depths for which the signals of the conventional technique are swamped by background noise from out-of-focus regions.

© 2012 OSA

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(180.2520) Microscopy : Fluorescence microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 4, 2012
Revised Manuscript: April 26, 2012
Manuscript Accepted: May 8, 2012
Published: June 14, 2012

Citation
Keisuke Isobe, Hiroyuki Kawano, Takanori Takeda, Akira Suda, Akiko Kumagai, Hideaki Mizuno, Atsushi Miyawaki, and Katsumi Midorikawa, "Background-free deep imaging by spatial overlap modulation nonlinear optical microscopy," Biomed. Opt. Express 3, 1594-1608 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-7-1594


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000). [CrossRef] [PubMed]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  4. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  5. F. Légaré, C. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J.93(4), 1312–1320 (2007). [CrossRef] [PubMed]
  6. J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001). [CrossRef]
  7. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997). [CrossRef]
  8. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett.7(8), 350–352 (1982). [CrossRef] [PubMed]
  9. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999). [CrossRef]
  10. K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express14(2), 786–793 (2006). [CrossRef] [PubMed]
  11. K. Isobe, T. Kawasumi, T. Tamaki, S. Kataoka, Y. Ozeki, and K. Itoh, “Three-dimensional profiling of refractive index distribution inside transparent materials by use of nonresonant four-wave mixing microscopy,” Appl. Phys. Express1, 022006 (2008). [CrossRef]
  12. W. S. Warren, M. C. Fischer, and T. Ye, “Novel nonlinear contrast improves deep-tissue microscopy,” Laser Focus World43, 99–103 (June 1, 2007).
  13. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  14. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009). [CrossRef]
  15. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express17(5), 3651–3658 (2009). [CrossRef] [PubMed]
  16. P. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett.27(18), 1634–1636 (2002). [CrossRef] [PubMed]
  17. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003). [CrossRef] [PubMed]
  18. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  19. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A23(12), 3139–3149 (2006). [CrossRef] [PubMed]
  20. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005). [CrossRef] [PubMed]
  21. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  22. A. Leray and J. Mertz, “Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging,” Opt. Express14(22), 10565–10573 (2006). [CrossRef] [PubMed]
  23. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  24. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  25. N. Chen, C.-H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express16(23), 18764–18769 (2008). [CrossRef] [PubMed]
  26. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  27. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  28. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  29. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  30. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett.99(22), 228105 (2007). [CrossRef] [PubMed]
  31. K. Isobe, A. Suda, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “High-resolution fluorescence microscopy based on a cyclic sequential multiphoton process,” Biomed. Opt. Express1(3), 791–797 (2010). [CrossRef] [PubMed]
  32. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  33. G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express17(17), 14567–14573 (2009). [CrossRef] [PubMed]
  34. P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer, “Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research,” Appl. Phys. Lett.66(13), 1698–1700 (1995). [CrossRef]
  35. M. R. Beversluis and S. J. Stranick, “Enhanced contrast coherent anti-Stokes Raman scattering microscopy using annular phase masks,” Appl. Phys. Lett.93(23), 231115 (2008). [CrossRef]
  36. R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  37. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000). [CrossRef] [PubMed]
  38. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron.16(4), 767–780 (2010). [CrossRef]
  39. N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nägerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J.101(5), 1277–1284 (2011). [CrossRef] [PubMed]
  40. S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett.96(11), 113701 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited