OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1609–1619

Dynamical hologram generation for high speed optical trapping of smart droplet microtools

P. M. P. Lanigan, I. Munro, E. J. Grace, D. R. Casey, J. Phillips, D. R. Klug, O. Ces, and M. A. A. Neil  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 7, pp. 1609-1619 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1305 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper demonstrates spatially selective sampling of the plasma membrane by the implementation of time-multiplexed holographic optical tweezers for Smart Droplet Microtools (SDMs). High speed (>1000fps) dynamical hologram generation was computed on the graphics processing unit of a standard display card and controlled by a user friendly LabView interface. Time multiplexed binary holograms were displayed in real time and mirrored to a ferroelectric Spatial Light Modulator. SDMs were manufactured with both liquid cores (as previously described) and solid cores, which confer significant advantages in terms of stability, polydispersity and ease of use. These were coated with a number of detergents, the most successful based upon lipids doped with transfection reagents. In order to validate these, trapped SDMs were maneuvered up to the plasma membrane of giant vesicles containing Nile Red and human biliary epithelial (BE) colon cancer cells with green fluorescent labeled protein (GFP)-labeled CAAX (a motif belonging to the Ras protein). Bright field and fluorescence images showed that successful trapping and manipulation of multiple SDMs in x, y, z was achieved with success rates of 30-50% and that subsequent membrane-SDM interactions led to the uptake of Nile Red or GFP-CAAX into the SDM.

© 2012 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(140.7010) Lasers and laser optics : Laser trapping
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(180.0180) Microscopy : Microscopy
(230.6120) Optical devices : Spatial light modulators
(090.5694) Holography : Real-time holography

ToC Category:
Optical Traps, Manipulation, and Tracking

Original Manuscript: April 23, 2012
Revised Manuscript: May 3, 2012
Manuscript Accepted: May 9, 2012
Published: June 14, 2012

Virtual Issues
August 7, 2012 Spotlight on Optics

P. M. P. Lanigan, I. Munro, E. J. Grace, D. R. Casey, J. Phillips, D. R. Klug, O. Ces, and M. A. A. Neil, "Dynamical hologram generation for high speed optical trapping of smart droplet microtools," Biomed. Opt. Express 3, 1609-1619 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  3. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36(10), 2107–2113 (1997). [CrossRef] [PubMed]
  4. W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007). [CrossRef] [PubMed]
  5. K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993). [CrossRef] [PubMed]
  6. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45(5), 888–896 (2006). [CrossRef] [PubMed]
  7. J. W. Goodman, “Wavefront modulation,” in Introduction to Fourier Optics, 3rd ed. (Roberts & Co., 2004), Chap. 7.
  8. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006). [CrossRef] [PubMed]
  9. A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read, “Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications,” Opt. Express 14(7), 3065–3072 (2006). [CrossRef] [PubMed]
  10. T. Haist, M. Reicherter, M. Wu, and L. Seifert, “Using graphics boards to compute holograms,” Comput. Sci. Eng. 8(1), 8–13 (2006). [CrossRef]
  11. R. J. Rost, OpenGL Shading Language (Addison-Wesley, 2008).
  12. National Instruments Corporation, “LabView 8.2.1” (2007), http://www.ni.com/labview/ .
  13. R. H. Templer and O. Ces, “New frontiers in single-cell analysis,” J. R. Soc. Interface 5(Suppl 2), S111–S112 (2008). [CrossRef] [PubMed]
  14. P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008). [CrossRef] [PubMed]
  15. P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009). [CrossRef] [PubMed]
  16. A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011). [CrossRef] [PubMed]
  17. NVidia, “GeForce 8600” (2009), http://www.nvidia.com/object/geforce_8600.html .
  18. Apple, “Working with Quartz Composer” (2009), http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html .
  19. NVidia, “FX Composer 2.5” (2009), http://developer.nvidia.com/object/fx_composer_home.html .
  20. University of Glasgow School of Physics and Astronomy, “Optical tweezers software” (2010), http://www.gla.ac.uk/schools/physics/research/groups/optics/research/opticaltweezers/software/ .
  21. B. R. Boruah and M. A. A. Neil, “Susceptibility to and correction of azimuthal aberrations in singular light beams,” Opt. Express 14(22), 10377–10385 (2006). [CrossRef] [PubMed]
  22. M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000). [CrossRef] [PubMed]
  23. B. Fowle, “Setting up OpenGL in an MFC control” (2006), http://www.codeguru.com .
  24. M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” in Trends in Colloid and Interface Science VI, C. Helm, M. Lösche, and H. Möhwald, eds. (Springer, Berlin, 1992), pp. 127–131.
  25. beepa, “Fraps real-time video capture and benchmarking” (2009), http://www.fraps.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1117 KB)     
» Media 2: MOV (1506 KB)     
» Media 3: MOV (2776 KB)     
» Media 4: MOV (2239 KB)     
» Media 5: MOV (228 KB)     
» Media 6: MOV (537 KB)     
» Media 7: MOV (24 KB)     
» Media 8: MOV (10 KB)     
» Media 9: MOV (278 KB)     
» Media 10: MOV (236 KB)     
» Media 11: MOV (61 KB)     
» Media 12: MOV (403 KB)     
» Media 13: MOV (46 KB)     
» Media 14: MOV (632 KB)     
» Media 15: MOV (176 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited