OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1620–1631

Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range

Sebastian Marschall, Christian Pedersen, and Peter E. Andersen  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 7, pp. 1620-1631 (2012)
http://dx.doi.org/10.1364/BOE.3.001620


View Full Text Article

Enhanced HTML    Acrobat PDF (923 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, the wavelength range around 1060 nm has become attractive for retinal imaging with optical coherence tomography (OCT), promising deep penetration into the retina and the choroid. The adjacent water absorption bands limit the useful bandwidth of broadband light sources, but until now, the actual limitation has not been quantified in detail. We have numerically investigated the impact of water absorption on the axial resolution and signal amplitude for a wide range of light source bandwidths and center wavelengths. Furthermore, we have calculated the sensitivity penalty for maintaining the optimal resolution by spectral shaping. As our results show, with currently available semiconductor-based light sources with up to 100–120 nm bandwidth centered close to 1060 nm, the resolution degradation caused by the water absorption spectrum is smaller than 10%, and it can be compensated by spectral shaping with negligible sensitivity penalty. With increasing bandwidth, the resolution degradation and signal attenuation become stronger, and the optimal operating point shifts towards shorter wavelengths. These relationships are important to take into account for the development of new broadband light sources for OCT.

© 2012 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(350.5730) Other areas of optics : Resolution

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: March 27, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: June 8, 2012
Published: June 18, 2012

Citation
Sebastian Marschall, Christian Pedersen, and Peter E. Andersen, "Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range," Biomed. Opt. Express 3, 1620-1631 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-7-1620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography—current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400, 2699–2720 (2011). [CrossRef] [PubMed]
  3. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt.30, 2975–2979 (1991). [CrossRef] [PubMed]
  4. T. Hillman and D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Opt. Express13, 1860–1874 (2005). [CrossRef] [PubMed]
  5. S. Hariri, A. A. Moayed, A. Dracopoulos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range,” Opt. Express17, 24304–24316 (2009). [CrossRef]
  6. T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res.37, 249–253 (1997). [CrossRef] [PubMed]
  7. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan,” Appl. Opt.46, 8394–8401 (2007). [CrossRef] [PubMed]
  8. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27, 45–88 (2008). [CrossRef]
  9. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24, 1221–1223 (1999). [CrossRef]
  10. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16, 15149–15169 (2008). [CrossRef] [PubMed]
  11. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. J. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11, 1980–1986 (2003). [CrossRef]
  12. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13, 3252–3258 (2005). [CrossRef] [PubMed]
  13. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15, 6121–6139 (2007). [CrossRef] [PubMed]
  14. M. L. Wolbarsht, A. W. Walsh, and G. George, “Melanin, a unique biological absorber,” Appl. Opt.20, 2184–2186 (1981). [CrossRef] [PubMed]
  15. A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt.9, 193–199 (2004). [CrossRef] [PubMed]
  16. Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14, 024016 (2009). [CrossRef] [PubMed]
  17. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007). [CrossRef]
  18. Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express11, 1411–1417 (2003). [CrossRef] [PubMed]
  19. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18, 20029–20048 (2010). [CrossRef] [PubMed]
  20. C. Chong, T. Suzuki, K. Totsuka, A. Morosawa, and T. Sakai, “Large coherence length swept source for axial length measurement of the eye,” Appl. Opt.48, D144–50 (2009). [CrossRef] [PubMed]
  21. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19, 20930–20939 (2011). [CrossRef] [PubMed]
  22. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 Gvoxels per second,” Opt. Express18, 14685–14704 (2010). [CrossRef] [PubMed]
  23. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19, 3044–3062 (2011). [CrossRef] [PubMed]
  24. S.-H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12, 2977–2998 (2004). [CrossRef] [PubMed]
  25. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32, 2049–2051 (2007). [CrossRef] [PubMed]
  26. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for oct imaging applications,” Proc. SPIE7554, 75541F (2010).
  27. S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18, 15820–15831 (2010). [CrossRef] [PubMed]
  28. S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012). [CrossRef]
  29. M. K. Harduar, A. Mariampillai, B. Vuong, X. Gu, B. A. Standish, and V. X. D. Yang, “Dual-core ytterbium fiber amplifier for high-power 1060 nm swept source multichannel optical coherence tomography imaging,” Opt. Lett.36, 2976–2978 (2011). [CrossRef] [PubMed]
  30. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am.64, 1107–1110 (1974). [CrossRef]
  31. American National Standards Institute, “American National Standard for Safe Use of Lasers,” ANSI Z 136-1.
  32. International Electrotechnical Commission, “Safety of laser products,” IEC 60825.
  33. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett.33, 2556–2558 (2008). [CrossRef] [PubMed]
  34. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011). [CrossRef]
  35. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19, 677–717 (1990). [CrossRef]
  36. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited