OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1647–1661

Adaptive optics scanning ophthalmoscopy with annular pupils

Yusufu N. Sulai and Alfredo Dubra  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 7, pp. 1647-1661 (2012)
http://dx.doi.org/10.1364/BOE.3.001647


View Full Text Article

Enhanced HTML    Acrobat PDF (7379 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(220.1230) Optical design and fabrication : Apodization
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: March 13, 2012
Revised Manuscript: April 25, 2012
Manuscript Accepted: June 1, 2012
Published: June 20, 2012

Citation
Yusufu N. Sulai and Alfredo Dubra, "Adaptive optics scanning ophthalmoscopy with annular pupils," Biomed. Opt. Express 3, 1647-1661 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-7-1647


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  2. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci.47(5), 2080–2092 (2006). [CrossRef] [PubMed]
  3. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express14(10), 4552–4569 (2006). [CrossRef] [PubMed]
  4. J. Rha, B. Schroeder, P. Godara, and J. Carroll, “Variable optical activation of human cone photoreceptors visualized using a short coherence light source,” Opt. Lett.34(24), 3782–3784 (2009). [CrossRef] [PubMed]
  5. E. W. Dees, A. Dubra, and R. C. Baraas, “Variability in parafoveal cone mosaic in normal trichromatic individuals,” Biomed. Opt. Express2(5), 1351–1358 (2011). [CrossRef] [PubMed]
  6. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002). [PubMed]
  7. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express14(8), 3354–3367 (2006). [CrossRef] [PubMed]
  8. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  9. B. Vohnsen and D. Rativa, “Ultrasmall spot size scanning laser ophthalmoscopy,” Biomed. Opt. Express2(6), 1597–1609 (2011). [CrossRef] [PubMed]
  10. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(6), 1757–1768 (2011). [CrossRef] [PubMed]
  11. R. F. Cooper, A. M. Dubis, A. Pavaskar, J. Rha, A. Dubra, and J. Carroll, “Spatial and temporal variation of rod photoreceptor reflectance in the human retina,” Biomed. Opt. Express2(9), 2577–2589 (2011). [CrossRef] [PubMed]
  12. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  13. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  14. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  15. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A24(5), 1327–1336 (2007). [CrossRef] [PubMed]
  16. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express14(10), 4380–4394 (2006). [CrossRef] [PubMed]
  17. A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci.48(5), 2297–2303 (2007). [CrossRef] [PubMed]
  18. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci.50(3), 1350–1359 (2009). [CrossRef] [PubMed]
  19. J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology112(12), 2219–2224 (2005). [CrossRef] [PubMed]
  20. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express17(5), 4095–4111 (2009). [CrossRef] [PubMed]
  21. D. Scoles, D. C. Gray, J. J. Hunter, R. Wolfe, B. P. Gee, Y. Geng, B. D. Masella, R. T. Libby, S. Russell, D. R. Williams, and W. H. Merigan, “In-vivo imaging of retinal nerve fiber layer vasculature: imaging—histology comparison,” BMC Ophthalmol.9, 9 (2009). [CrossRef] [PubMed]
  22. A. S. Vilupuru, N. V. Rangaswamy, L. J. Frishman, E. L. Smith, R. S. Harwerth, and A. Roorda, “Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa,” J. Opt. Soc. Am. A24(5), 1417–1425 (2007). [CrossRef] [PubMed]
  23. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express17(22), 19382–19400 (2009). [CrossRef] [PubMed]
  24. K. M. Ivers, C. Li, N. Patel, N. Sredar, X. Luo, H. Queener, R. S. Harwerth, and J. Porter, “Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging,” Invest. Ophthalmol. Vis. Sci.52(8), 5473–5480 (2011). [CrossRef] [PubMed]
  25. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  26. D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(8), 2189–2201 (2011). [CrossRef] [PubMed]
  27. J. E. Birren, R. C. Casperson, and J. Botwinick, “Age changes in pupil size,” J. Gerontol.5(3), 216–221 (1950). [CrossRef] [PubMed]
  28. D. S. Friedman, B. J. O’Colmain, B. Muñoz, S. C. Tomany, C. McCarty, P. T. de Jong, B. Nemesure, P. Mitchell, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of age-related macular degeneration in the United States,” Arch. Ophthalmol.122(4), 564–572 (2004). [CrossRef] [PubMed]
  29. D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol.122(4), 532–538 (2004). [CrossRef] [PubMed]
  30. J. H. Kempen, B. J. O’Colmain, M. C. Leske, S. M. Haffner, R. Klein, S. E. Moss, H. R. Taylor, R. F. Hamman, and Eye Diseases Prevalence Research Group, “The prevalence of diabetic retinopathy among adults in the United States,” Arch. Ophthalmol.122(4), 552–563 (2004). [CrossRef] [PubMed]
  31. H. F. A. Tschunko, “Imaging performance of annular apertures,” Appl. Opt.13(8), 1820–1823 (1974). [CrossRef] [PubMed]
  32. T. Wilson and S. J. Hewlett, “The use of annular pupil plane filters to tune the imaging properties in confocal microscopy,” J. Mod. Opt.37(12), 2025–2046 (1990). [CrossRef]
  33. L. Rayleigh, “Investigations in optics with special reference to the spectroscope,” Philos. Mag.5(8), 261–274 (1879).
  34. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  35. M. Born and E. Wolf, “Principles of optics.” 7th (expanded) Edition (Cambridge University press) p. 487 (1999).
  36. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett.12(4), 227–229 (1987). [CrossRef] [PubMed]
  37. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A24(5), 1250–1265 (2007). [CrossRef] [PubMed]
  38. A. Dubra and Z. Harvey, “Registration of 2d images from fast scanning ophthalmic instruments,” Lect. Notes Comput. Sci.6204, 60–71 (2010). [CrossRef]
  39. J. M. Enoch, “Optical properties of the retinal receptors,” J. Opt. Soc. Am.53(1), 71–85 (1963). [CrossRef]
  40. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am.64(9), 1200–1210 (1974). [CrossRef]
  41. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci.44(10), 4580–4592 (2003). [CrossRef] [PubMed]
  42. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express18(5), 5257–5270 (2010). [CrossRef] [PubMed]
  43. S. A. Burns, S. Wu, J. C. He, and A. E. Elsner, “Variations in photoreceptor directionality across the central retina,” J. Opt. Soc. Am. A14(9), 2033–2040 (1997). [CrossRef]
  44. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A24(5), 1358–1363 (2007). [CrossRef] [PubMed]
  45. R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci.89(5), 632–643 (2012). [CrossRef] [PubMed]
  46. S. A. Burns, S. Wu, F. Delori, and A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A12(10), 2329–2338 (1995). [CrossRef] [PubMed]
  47. J. A. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vision Res.15(8-9), 1005–1009 (1975). [CrossRef] [PubMed]
  48. M. Alpern, C. C. Ching, and K. Kitahara, “The directional sensitivity of retinal rods,” J. Physiol.343, 577–592 (1983). [PubMed]
  49. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, “Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography,” Opt. Express16(9), 6486–6501 (2008). [CrossRef] [PubMed]
  50. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express15(24), 16141–16160 (2007). [CrossRef] [PubMed]
  51. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express2(4), 748–763 (2011). [CrossRef] [PubMed]
  52. M. Pircher, J. S. Kroisamer, F. Felberer, H. Sattmann, E. Götzinger, and C. K. Hitzenberger, “Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT,” Biomed. Opt. Express2(1), 100–112 (2011). [CrossRef] [PubMed]
  53. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express3(4), 715–734 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited