OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1670–1683

Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization

Bernhard Baumann, Stefan O. Baumann, Thomas Konegger, Michael Pircher, Erich Götzinger, Ferdinand Schlanitz, Christopher Schütze, Harald Sattmann, Marco Litschauer, Ursula Schmidt-Erfurth, and Christoph K. Hitzenberger  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 7, pp. 1670-1683 (2012)
http://dx.doi.org/10.1364/BOE.3.001670


View Full Text Article

Enhanced HTML    Acrobat PDF (3063 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT. In addition to imaging based on tissue reflectivity, PS-OCT also enables depth-resolved mapping of sample polarization properties such as phase-retardation, birefringent axis orientation, Stokes vectors, and degree of polarization uniformity (DOPU). In this study, PS-OCT was used to investigate the polarization properties of melanin. In-vitro measurements in samples with varying melanin concentrations revealed polarization scrambling, i.e. depolarization of backscattered light. Polarization scrambling in the PS-OCT images was more pronounced for higher melanin concentrations and correlated with the concentration of the melanin granules in the phantoms. Moreover, in-vivo PS-OCT was performed in the retinas of normal subjects and individuals with albinism. Unlike in the normal eye, polarization scrambling in the retinal pigment epithelium (RPE) was less pronounced or even not observable in PS-OCT images of albinos. These results indicate that the depolarizing appearance of pigmented structures like, for instance, the RPE is likely to be caused by the melanin granules contained in these cells.

© 2012 OSA

OCIS Codes
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(230.5440) Optical devices : Polarization-selective devices
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: April 19, 2012
Revised Manuscript: June 14, 2012
Manuscript Accepted: June 15, 2012
Published: June 21, 2012

Citation
Bernhard Baumann, Stefan O. Baumann, Thomas Konegger, Michael Pircher, Erich Götzinger, Ferdinand Schlanitz, Christopher Schütze, Harald Sattmann, Marco Litschauer, Ursula Schmidt-Erfurth, and Christoph K. Hitzenberger, "Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization," Biomed. Opt. Express 3, 1670-1683 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-7-1670


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  3. J. Walther, M. Gaertner, P. Cimalla, A. Burkhardt, L. Kirsten, S. Meissner, and E. Koch, “Optical coherence tomography in biomedical research,” Anal. Bioanal. Chem.400(9), 2721–2743 (2011). [CrossRef] [PubMed]
  4. S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography-current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400(9), 2699–2720 (2011). [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  7. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  8. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  9. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008). [CrossRef] [PubMed]
  10. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9(6), 903–908 (1992). [CrossRef]
  11. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett.24(5), 300–302 (1999). [CrossRef] [PubMed]
  12. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45(8), 2606–2612 (2004). [CrossRef] [PubMed]
  13. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001). [CrossRef] [PubMed]
  14. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express16(21), 16410–16422 (2008). [CrossRef] [PubMed]
  15. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7(3), 350–358 (2002). [CrossRef] [PubMed]
  16. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett.27(2), 101–103 (2002). [CrossRef] [PubMed]
  17. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29(21), 2512–2514 (2004). [CrossRef] [PubMed]
  18. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49(6), 2661–2667 (2008). [CrossRef] [PubMed]
  19. S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol.92(2), 204–209 (2008). [CrossRef] [PubMed]
  20. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express12(24), 5940–5951 (2004). [CrossRef] [PubMed]
  21. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008). [CrossRef] [PubMed]
  22. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011). [CrossRef] [PubMed]
  23. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Transversal phase resolved polarization sensitive optical coherence tomography,” Phys. Med. Biol.49(7), 1257–1263 (2004). [CrossRef] [PubMed]
  24. C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(4), 2149–2157 (2010). [CrossRef] [PubMed]
  25. B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15(6), 061704 (2010). [CrossRef] [PubMed]
  26. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Measurements of depolarization distribution in the healthy human macula by polarization sensitive OCT,” J Biophotonics2(6-7), 426–434 (2009). [CrossRef] [PubMed]
  27. L. Feeney-Burns, E. S. Hilderbrand, and S. Eldridge, “Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells,” Invest. Ophthalmol. Vis. Sci.25(2), 195–200 (1984). [PubMed]
  28. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci.27(2), 145–152 (1986). [PubMed]
  29. C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci.47(8), 3556–3564 (2006). [CrossRef] [PubMed]
  30. B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Gotzinger, H. Sattmann, M. Litschauer, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides tissue inherent contrast based on depolarization,” Proc. SPIE7554, 75541M, 75541M-6 (2010). [CrossRef]
  31. P. Giacomoni, L. Marrot, M. Mellul, and A. Colette, “Process for the preparation of a small size melanic pigment and its use in cosmetics,” PCT Patent 1994/025531 (1994).
  32. K. M. Zinn and J. V. Benjamin-Henkind, “Anatomy of the human retinal pigment epithelium,” in The Retinal Pigment Epithelium, K. M. Zinn and M. F. Marmor, eds. (Harvard University Press, 1979).
  33. American national standard for safe use of lasers. ANSI Z 136.1 (Laser Institute of America, 2000).
  34. InternationaI Electrotechnical Comission, Safety of laser products - Part 1: Equipment classification and requirements, IEC 60825–1 Ed. 2 (IEC, 2001).
  35. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13(25), 10217–10229 (2005). [CrossRef] [PubMed]
  36. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  37. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997). [CrossRef] [PubMed]
  38. M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett.23(3), 228–230 (1998). [CrossRef] [PubMed]
  39. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5487–5494 (2006). [CrossRef] [PubMed]
  40. J. M. Schmitt and S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett.23(13), 1060–1062 (1998). [CrossRef] [PubMed]
  41. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt.7(3), 359–371 (2002). [CrossRef] [PubMed]
  42. M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett.20(12), 1356–1358 (1995). [CrossRef] [PubMed]
  43. M. Ahmad, S. Alali, A. Kim, M. F. G. Wood, M. Ikram, and I. A. Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?” Biomed. Opt. Express2(12), 3248–3258 (2011). [CrossRef] [PubMed]
  44. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express17(5), 4151–4165 (2009). [CrossRef] [PubMed]
  45. R. E. Carr and I. M. Siegel, “The Retinal Pigment Epithelium in Ocular Albinism,” in The Retinal Pigment Epithelium, K. M. Zinn and M. F. Marmor, eds. (Harvard University Press, 1979).
  46. G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, and C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol.127(1), 37–44 (2009). [CrossRef] [PubMed]
  47. J. T. McAllister, A. M. Dubis, D. M. Tait, S. Ostler, J. Rha, K. E. Stepien, C. G. Summers, and J. Carroll, “Arrested development: high-resolution imaging of foveal morphology in albinism,” Vision Res.50(8), 810–817 (2010). [CrossRef] [PubMed]
  48. B. Cense, N. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004). [CrossRef] [PubMed]
  49. V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.49(4), 1571–1579 (2008). [CrossRef] [PubMed]
  50. A. L. Kornzweig, “Aging of the retinal pigment epithelium,” in The Retinal Pigment Epithelium, K. M. Zinn and M. F. Marmor, eds. (Harvard University Press, 1979).
  51. U. Schraermeyer and K. Heimann, “Current understanding on the role of retinal pigment epithelium and its pigmentation,” Pigment Cell Res.12(4), 219–236 (1999). [CrossRef] [PubMed]
  52. S. Schmitz-Valckenberg, D. Lara, S. Nizari, E. M. Normando, L. Guo, A. R. Wegener, A. Tufail, F. W. Fitzke, F. G. Holz, and M. F. Cordeiro, “Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging,” Br. J. Ophthalmol.95(8), 1134–1139 (2011). [CrossRef] [PubMed]
  53. X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011). [CrossRef] [PubMed]
  54. H. Mietz, W. R. Green, S. M. Wolff, and G. P. Abundo, “Foveal hypoplasia in complete oculocutaneous albinism. A histopathologic study,” Retina12(3), 254–260 (1992). [CrossRef] [PubMed]
  55. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express20(9), 10218–10230 (2012). [CrossRef] [PubMed]
  56. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express12(14), 3236–3244 (2004). [CrossRef] [PubMed]
  57. S. L. Jiao, M. S. Jiang, J. M. Hu, A. Fawzi, Q. F. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited