OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 7 — Jul. 1, 2012
  • pp: 1684–1700

Geometry-invariant GRIN lens: iso-dispersive contours

Mehdi Bahrami and Alexander V. Goncharov  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 7, pp. 1684-1700 (2012)
http://dx.doi.org/10.1364/BOE.3.001684


View Full Text Article

Enhanced HTML    Acrobat PDF (1227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dispersive model of a gradient refractive index (GRIN) lens is introduced based on the idea of iso-dispersive contours. These contours have constant Abbe number and their shape is related to iso-indicial contours of the monochromatic geometry-invariant GRIN lens (GIGL) model. The chromatic GIGL model predicts the dispersion throughout the GRIN structure by using the dispersion curves of the surface and the center of the lens. The analytical approach for paraxial ray tracing and the monochromatic aberration calculations used in the GIGL model is employed here to derive closed-form expressions for the axial and lateral color coefficients of the lens. Expressions for equivalent refractive index and the equivalent Abbe number of the homogeneous equivalent lens are also presented and new aspects of the chromatic aberration change due to aging are discussed. The key derivations and explanations of the GRIN lens optical properties are accompanied with numerical examples for the human and animal eye GRIN lenses.

© 2012 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(220.1000) Optical design and fabrication : Aberration compensation
(080.1005) Geometric optics : Aberration expansions
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision and Visual Optics

History
Original Manuscript: May 10, 2012
Revised Manuscript: June 13, 2012
Manuscript Accepted: June 13, 2012
Published: June 22, 2012

Citation
Mehdi Bahrami and Alexander V. Goncharov, "Geometry-invariant GRIN lens: iso-dispersive contours," Biomed. Opt. Express 3, 1684-1700 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-7-1684


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14, 1684–1695 (1997). [CrossRef]
  2. J. A. Díaz, C. Pizarro, and J. Arasa, “Single dispersive gradient-index profile for the aging human lens,” J. Opt. Soc. Am. A25, 250–261 (2008). [CrossRef]
  3. M. Bahrami and A. V. Goncharov, “Geometry-invariant GRIN lens: analytical ray tracing” J. Biomed. Opt.17, 055001 (2012). [CrossRef] [PubMed]
  4. B. K. Pierscionek, “Presbyopia - effect of refractive index,” Clin. Exp. Optom.73, 23–30 (1990). [CrossRef]
  5. G. Smith, D. A. Atchison, and B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A9, 2111–2117 (1992). [CrossRef] [PubMed]
  6. G. Smith and B. K. Pierscionek, “The optical structure of the lens and its contribution to the refractive status of the eye,” Ophthalmic Physiol. Opt.18, 21–29 (1998). [CrossRef] [PubMed]
  7. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45, 2352–2366 (2005). [CrossRef] [PubMed]
  8. R. Navarro, F. Palos, and L. González, “Adaptive model of the gradient index of the human lens. I. formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A24, 2175–2185 (2007). [CrossRef]
  9. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci.49, 2531–2540 (2008). [CrossRef] [PubMed]
  10. D. A. Palmer and J. Sivak, “Crystalline lens dispersion,” J. Opt. Soc. Am. A71, 780–782 (1981). [CrossRef]
  11. J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res.22, 997–1003 (1982). [CrossRef] [PubMed]
  12. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A22, 29–37 (2005). [CrossRef]
  13. The geometry-Invariant lens computational code. This is a computable document format (CDF) for the equations presented in Ref. [3]. Our source CDF code can be accessed via Mathematica, the computational software developed by Wolfram Research (Oct. 2011), http://optics.nuigalway.ie/people/mehdiB/CDF.html .
  14. M. J. Kidger, Fundamental Optical Design (SPIE Press, 2002).
  15. B. Gilmartin and R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res.25, 1747–1755 (1985). [CrossRef] [PubMed]
  16. R. I. Barraquer, R. Michael, R. Abreu, J. Lamarca, and F. Tresserra, “Human lens capsule thickness as a function of age and location along the sagittal lens perimeter,” Invest. Ophthalmol. Vis. Sci.47, 2053–2060 (2006). [CrossRef] [PubMed]
  17. Y. Le Grand, Form and Space Vision, rev. ed., translated by M. Millodot and G. Heath (Indiana University Press, 1967).
  18. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A2, 1273–1281 (1985). [CrossRef] [PubMed]
  19. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48, 2732–2738 (2008). [CrossRef] [PubMed]
  20. C. Ware, “Human axial chromatic aberration found not to decline with age,” A. Graefes Arch. Klin. Exp. Ophthalmol.218, 39–41 (1982). [CrossRef]
  21. P. A. Howarth, X. X. Zhang, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?,” J. Opt. Soc. Am. A5, 2087–2096 (1988). [CrossRef] [PubMed]
  22. M. Millodot, “The influence of age on the chromatic aberration of the eye,” A. Graefes Arch. Klin. Exp. Ophthalmol.198, 235–243 (1976). [CrossRef]
  23. J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” A. Graefes Arch. Klin. Exp. Ophthalmol.198, 235–243 (1976). [CrossRef]
  24. N. Brown, “The change in lens curvature with age,” Exp. Eye Res.19, 175–183 (1974). [CrossRef] [PubMed]
  25. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A24, 2157–2174 (2007). [CrossRef]
  26. R. H. H. Kröger and M. C. W. Campbell, “Dispersion and longitudinal chromatic aberration of the crystalline lens of the African cichlid fish Haplochromis burtoni,” J. Opt. Soc. Am. A13, 2341–2347 (1996). [CrossRef]
  27. W. S. Jagger and P. J. Standsl, “A wide-angle gradient index optical model of the crystalline lens and eye of the octopus,” Vision Res.39, 2841–2852 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited