OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 8 — Aug. 1, 2012
  • pp: 1787–1792

Spectral discrimination between normal and leukemic human sera using delayed luminescence

Ping Chen, Lei Zhang, Feng Zhang, Jing-Ting Liu, Hua Bai, Guo-Qing Tang, and Lie Lin  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 8, pp. 1787-1792 (2012)
http://dx.doi.org/10.1364/BOE.3.001787


View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, photoinduced delayed luminescence (DL) was used to distinguish serum samples of patients with acute lymphoblastic leukemia from those of healthy volunteers. DL decay kinetics of human serum samples was measured using a homebuilt ultraweak luminescence detection system. It was found a significant difference in the weight distribution of the decay rate between normal and leukemic serum samples. A comparison of the DL kinetics parameters including the initial intensity, the peak decay rate, and the peak weight value was used in making discrimination between normal and leukemic human sera. Results in this work contribute to the development of a novel optical method for the early diagnosis of leukemia.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: February 15, 2012
Revised Manuscript: April 6, 2012
Manuscript Accepted: April 27, 2012
Published: July 2, 2012

Citation
Ping Chen, Lei Zhang, Feng Zhang, Jing-Ting Liu, Hua Bai, Guo-Qing Tang, and Lie Lin, "Spectral discrimination between normal and leukemic human sera using delayed luminescence," Biomed. Opt. Express 3, 1787-1792 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-8-1787


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Lin, S. Y. Feng, J. J. Pan, Y. P. Chen, J. Q. Lin, G. N. Chen, S. S. Xie, H. S. Zeng, and R. Chen, “Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis,” Opt. Express19(14), 13565–13577 (2011). [CrossRef] [PubMed]
  2. A. Khetani, V. S. Tiwari, A. Harb, and H. Anis, “Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber,” Opt. Express19(16), 15244–15254 (2011). [CrossRef] [PubMed]
  3. S. L. Haas, R. Müller, A. Fernandes, K. Dzeyk-Boycheva, S. Würl, J. Hohmann, S. Hemberger, E. Elmas, M. Brückmann, P. Bugert, and J. Backhaus, “Spectroscopic diagnosis of myocardial infarction and heart failure by Fourier transform infrared spectroscopy in serum samples,” Appl. Spectrosc.64(3), 262–267 (2010). [CrossRef] [PubMed]
  4. D. H. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt.46(10), 1726–1734 (2007). [CrossRef] [PubMed]
  5. F. Erdem, M. Gundogdu, and A. Kiziltunc, “Serum vascular endothelial growth factor level in patients with hematological malignancies,” Eur. J. Gen. Med.3, 116–120 (2006).
  6. C. G. L. Canellas, S. M. F. Carvalho, E. F. O. De Jesus, M. J. Anjos, and R. T. Lopes, “Trace and major elements in serum of patients with chronic myelogenous leukemia,” J. Radioanal. Nucl. Chem.269(3), 631–634 (2006). [CrossRef]
  7. X. D. Zhang, J. F. Li, Q. Q. Zhao, L. Zhang, and C. Pan, “The study on absorption spectrum of leukaemia's serum,” Laser & Infrared38, 267–269 (2008).
  8. F. A. Popp and Y. Yan, “Delayed luminescence of biological systems in terms of coherent states,” Phys. Lett. A293(1-2), 93–97 (2002). [CrossRef]
  9. Y. Yan, F. A. Popp, S. Sigrist, D. Schlesinger, A. Dolf, Z. C. Yan, S. Cohen, and A. Chotia, “Further analysis of delayed luminescence of plants,” J. Photochem. Photobiol. B78(3), 235–244 (2005). [CrossRef] [PubMed]
  10. J. Kim, J. Lim, B. C. Lee, Y. U. Kim, S. K. Lee, B. S. Cheun, and K. S. Soh, “Spontaneous ultra-weak photon emission and delayed luminescence during carbon tetrachloride-induced liver injury and repair in mouse,” J. Health Sci.51(2), 155–160 (2005). [CrossRef]
  11. H. W. Kim, S. B. Sim, C. K. Kim, J. Kim, C. H. Choi, H. R. You, and K. S. Soh, “Spontaneous photon emission and delayed luminescence of two types of human lung cancer tissues: adenocarcinoma and squamous cell carcinoma,” Cancer Lett.229(2), 283–289 (2005). [CrossRef] [PubMed]
  12. F. Musumeci, L. A. Applegate, G. Privitera, A. Scordino, S. Tudisco, and H. J. Niggli, “Spectral analysis of laser-induced ultraweak delayed luminescence in cultured normal and tumor human cells: temperature dependence,” J. Photochem. Photobiol. B79(2), 93–99 (2005). [CrossRef] [PubMed]
  13. L. Lanzanò, A. Scordino, S. Privitera, S. Tudisco, and F. Musumeci, “Spectral analysis of Delayed Luminescence from human skin as a possible non-invasive diagnostic tool,” Eur. Biophys. J.36(7), 823–829 (2007). [CrossRef] [PubMed]
  14. E. Costanzo, M. Gulino, L. Lanzanò, F. Musumeci, A. Scordino, S. Tudisco, and L. Sui, “Single seed viability checked by delayed luminescence,” Eur. Biophys. J.37(2), 235–238 (2008). [CrossRef] [PubMed]
  15. C. L. Wang, D. Xing, L. Z. Zeng, C. F. Ding, and Q. Chen, “Effect of artificial acid rain and SO2 on characteristics of delayed light emission,” Luminescence20(1), 51–56 (2005). [CrossRef] [PubMed]
  16. S. Tudisco, F. Musumeci, A. Scordino, and G. Privitera, “Advanced research equipment for fast ultraweak luminescence analysis,” Rev. Sci. Instrum.74(10), 4485–4490 (2003). [CrossRef]
  17. H. Bai, P. Chen, L. Lin, S. J. Chang, G. Q. Tang, and G. G. Mu, “Physical mechanism of delayed luminescence from human serum,” Proc. SPIE7182, 71820K, 71820K-10 (2009). [CrossRef]
  18. T. F. Raichenok, “Luminescence of human blood serum in the longwave spectral region,” J. Appl. Spectrosc.66(3), 470–472 (1999). [CrossRef]
  19. W. Stenstrom and M. Reinhard, “Ultra-violet absorption spectra of blood serum and certain amino acids,” J. Biol. Chem.66, 819–827 (1925).
  20. S. Madhuri, N. Vengadesan, P. Aruna, D. Koteeswaran, P. Venkatesan, and S. Ganesan, “Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy,” Photochem. Photobiol.78(2), 197–204 (2003). [CrossRef] [PubMed]
  21. O. S. Wolfbeis and M. Leiner, “Mapping of the total fluorescence of human blood serum as a new method for its characterization,” Anal. Chim. Acta167, 203–215 (1985). [CrossRef]
  22. M. E. Rollie, G. Patonay, and I. M. Warner, “Automated sample deoxygenation for improved luminescence measurements,” Anal. Chem.59(1), 180–184 (1987). [CrossRef]
  23. A. Scordino, A. Triglia, and F. Musumeci, “Analogous features of delayed luminescence from Acetabularia acetabulum and some solid state systems,” J. Photochem. Photobiol. B56(2-3), 181–186 (2000). [CrossRef] [PubMed]
  24. The definition of p-value can be found at http://en.wikipedia.org/wiki/P-value .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited