OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 8 — Aug. 1, 2012
  • pp: 1811–1824

Limitations to adaptive optics image quality in rodent eyes

Xiaolin Zhou, Phillip Bedggood, and Andrew Metha  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 8, pp. 1811-1824 (2012)
http://dx.doi.org/10.1364/BOE.3.001811


View Full Text Article

Enhanced HTML    Acrobat PDF (1324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality in the human eye is robust to positioning errors of the AO corrector and to differences in imaging depth and wavelength compared to the wavefront beacon. In contrast, image quality in the rat eye declines sharply with each of these manipulations, especially when imaging off-axis. However, some latitude does exist to offset these manipulations against each other to produce good image quality.

© 2012 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices

ToC Category:
Active and Adaptive Optics

History
Original Manuscript: April 3, 2012
Revised Manuscript: June 8, 2012
Manuscript Accepted: June 14, 2012
Published: July 3, 2012

Citation
Xiaolin Zhou, Phillip Bedggood, and Andrew Metha, "Limitations to adaptive optics image quality in rodent eyes," Biomed. Opt. Express 3, 1811-1824 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-8-1811


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005). [CrossRef] [PubMed]
  2. B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009). [CrossRef] [PubMed]
  3. K. Kohzaki, A. J. Vingrys, and B. V. Bui, “Early inner retinal dysfunction in streptozotocin-induced diabetic rats,” Invest. Ophthalmol. Vis. Sci.49(8), 3595–3604 (2008). [CrossRef] [PubMed]
  4. Z. He, B. V. Bui, and A. J. Vingrys, “Effect of repeated IOP challenge on rat retinal function,” Invest. Ophthalmol. Vis. Sci.49(7), 3026–3034 (2008). [CrossRef] [PubMed]
  5. R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008). [PubMed]
  6. S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes,” Nature336(6197), 348–352 (1988). [CrossRef] [PubMed]
  7. M. R. Capecchi, “Altering the genome by homologous recombination,” Science244(4910), 1288–1292 (1989). [CrossRef] [PubMed]
  8. A. Abbott, “Laboratory animals: the Renaissance rat,” Nature428(6982), 464–466 (2004). [CrossRef] [PubMed]
  9. A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009). [CrossRef] [PubMed]
  10. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010). [PubMed]
  11. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010). [CrossRef] [PubMed]
  12. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  13. Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009). [CrossRef] [PubMed]
  14. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007). [CrossRef] [PubMed]
  15. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express3(4), 715–734 (2012). [CrossRef] [PubMed]
  16. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011). [CrossRef] [PubMed]
  17. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express2(4), 717–738 (2011). [CrossRef] [PubMed]
  18. G. Smith and D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge University Press, Cambridge, UK; New York, USA, 1997).
  19. A. Hughes, “A schematic eye for the rat,” Vision Res.19(5), 569–588 (1979). [CrossRef] [PubMed]
  20. A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography,” Arch. Ophthalmol.124(2), 193–198 (2006). [CrossRef] [PubMed]
  21. A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res.23(12), 1351–1363 (1983). [CrossRef] [PubMed]
  22. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am.47(6), 564–565 (1957). [CrossRef] [PubMed]
  23. P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27(11), A37–A47 (2010). [CrossRef] [PubMed]
  24. M. C. W. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res.21(7), 1129–1148, 1135–1148 (1981). [CrossRef] [PubMed]
  25. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997). [CrossRef] [PubMed]
  26. G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci.85(5), 330–340 (2008). [CrossRef] [PubMed]
  27. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A24(8), 2157–2174 (2007). [CrossRef] [PubMed]
  28. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge; New York, 1999).
  29. S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res.25(1), 21–31 (1985). [CrossRef] [PubMed]
  30. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express13(2), 400–409 (2005). [CrossRef] [PubMed]
  31. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999). [CrossRef] [PubMed]
  32. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002). [CrossRef] [PubMed]
  33. A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods109(2), 153–166 (2001). [CrossRef] [PubMed]
  34. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002). [PubMed]
  35. P. A. Bedggood, Adaptive Optics Methods to Increase the Isoplanatic Patch Size for Human Retinal Imaging, (Dept. of Optometry and Vision Sciences, University of Melbourne, 2008)
  36. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(15), 14160–14171 (2011). [CrossRef] [PubMed]
  37. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009). [CrossRef] [PubMed]
  38. D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703, 646703-8 (2007). [CrossRef]
  39. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett.31(7), 939–941 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited