OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 8 — Aug. 1, 2012
  • pp: 1825–1840

Auto-fluorescence lifetime and light reflectance spectroscopy for breast cancer diagnosis: potential tools for intraoperative margin detection

Vikrant Sharma, Shivaranjani Shivalingaiah, Yan Peng, David Euhus, Zygmunt Gryczynski, and Hanli Liu  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 8, pp. 1825-1840 (2012)
http://dx.doi.org/10.1364/BOE.3.001825


View Full Text Article

Enhanced HTML    Acrobat PDF (1401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study investigates the use of two spectroscopic techniques, auto-fluorescence lifetime measurement (AFLM) and light reflectance spectroscopy (LRS), for detecting invasive ductal carcinoma (IDC) in human ex vivo breast specimens. AFLM used excitation at 447 nm with multiple emission wavelengths (532, 562, 632, and 644 nm), at which auto-fluorescence lifetimes and their weight factors were analyzed using a double exponent model. LRS measured reflectance spectra in the range of 500-840 nm and analyzed the spectral slopes empirically at several distinct spectral regions. Our preliminary results based on 93 measured locations (i.e., 34 IDC, 31 benign fibrous, 28 adipose) from 6 specimens show significant differences in 5 AFLM-derived parameters and 9 LRS-based spectral slopes between benign and malignant breast samples. Multinomial logistic regression with a 10-fold cross validation approach was implemented with selected features to classify IDC from benign fibrous and adipose tissues for the two techniques independently as well as for the combined dual-modality approach. The accuracy for classifying IDC was found to be 96.4 ± 0.8%, 92.3 ± 0.8% and 96 ± 1.3% for LRS, AFLM, and dual-modality, respectively.

© 2012 OSA

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optics in Cancer Research

History
Original Manuscript: May 30, 2012
Manuscript Accepted: June 25, 2012
Published: July 9, 2012

Citation
Vikrant Sharma, Shivaranjani Shivalingaiah, Yan Peng, David Euhus, Zygmunt Gryczynski, and Hanli Liu, "Auto-fluorescence lifetime and light reflectance spectroscopy for breast cancer diagnosis: potential tools for intraoperative margin detection," Biomed. Opt. Express 3, 1825-1840 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-8-1825


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. American Cancer Society, Cancer Facts & Figures 2011 (ACS, 2011).
  2. G. A. Rahman, “Breast conserving therapy: a surgical technique where little can mean more,” J Surg Tech Case Rep3(1), 1–4 (2011). [CrossRef] [PubMed]
  3. R. G. Pleijhuis, M. Graafland, J. de Vries, J. Bart, J. S. de Jong, and G. M. van Dam, “Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions,” Ann. Surg. Oncol.16(10), 2717–2730 (2009). [CrossRef] [PubMed]
  4. S. E. Singletary, “Surgical margins in patients with early-stage breast cancer treated with breast conservation therapy,” Am. J. Surg.184(5), 383–393 (2002). [CrossRef] [PubMed]
  5. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia11(2), 165–181 (2006). [CrossRef] [PubMed]
  6. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt.5(2), 221–228 (2000). [CrossRef] [PubMed]
  7. G. M. Palmer, C. F. Zhu, T. M. Breslin, F. S. Xu, K. W. Gilchrist, and N. Ramanujam, “Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003),” IEEE Trans. Biomed. Eng.50(11), 1233–1242 (2003). [CrossRef] [PubMed]
  8. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt.13(2), 024012 (2008). [CrossRef] [PubMed]
  9. R. Nachabé, D. J. Evers, B. H. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt.16(8), 087010 (2011). [CrossRef] [PubMed]
  10. J. Q. Brown, T. M. Bydlon, L. M. Richards, B. Yu, S. A. Kennedy, J. Geradts, L. G. Wilke, M. Junker, J. Gallagher, W. T. Barry, and N. Ramanujam, “Optical assessment of tumor resection margins in the breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010). [CrossRef] [PubMed]
  11. M. D. Keller, S. K. Majumder, M. C. Kelley, I. M. Meszoely, F. I. Boulos, G. M. Olivares, and A. Mahadevan-Jansen, “Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis,” Lasers Surg. Med.42(1), 15–23 (2010). [CrossRef] [PubMed]
  12. S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res.12(6), R91 (2010). [CrossRef] [PubMed]
  13. M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt.12(2), 024014 (2007). [CrossRef] [PubMed]
  14. H. M. Chen, C. P. Chiang, C. You, T. C. Hsiao, and C. Y. Wang, “Time-resolved autofluorescence spectroscopy for classifying normal and premalignant oral tissues,” Lasers Surg. Med.37(1), 37–45 (2005). [CrossRef] [PubMed]
  15. J. McGinty, N. P. Galletly, C. Dunsby, I. Munro, D. S. Elson, J. Requejo-Isidro, P. Cohen, R. Ahmad, A. Forsyth, A. V. Thillainayagam, M. A. Neil, P. M. French, and G. W. Stamp, “Wide-field fluorescence lifetime imaging of cancer,” Biomed. Opt. Express1(2), 627–640 (2010). [CrossRef] [PubMed]
  16. P. J. Tadrous, J. Siegel, P. M. French, S. Shousha, N. Lalani, and G. W. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol.199(3), 309–317 (2003). [CrossRef] [PubMed]
  17. V. Sharma, N. Patel, J. Chen, L. Tang, G. Alexandrakis, and H. A. N. L. I. Liu, “A dual-modality optical biopsy approach for in vivo detection of prostate cancer in rat model,” J. Innovat. Opt. Health Sci. (JIOHS)04(03), 269–277 (2011). [CrossRef]
  18. L. L. Burgoyne, D. W. Jay, G. B. Bikhazi, and A. J. De Armendi, “Isosulfan blue causes factitious methemoglobinemia in an infant,” Paediatr. Anaesth.15(12), 1116–1119 (2005). [CrossRef] [PubMed]
  19. J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vlandas, G. L. Gambaruto, S. Lévêque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. W. French, “Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles,” Appl. Opt.42(16), 2995–3004 (2003). [CrossRef] [PubMed]
  20. C. W. Chang, D. Sud, and M. A. Mycek, “Fluorescence lifetime imaging microscopy,” Methods Cell Biol.81, 495–524 (2007). [CrossRef] [PubMed]
  21. V. Sharma, J. W. He, S. Narvenkar, Y. B. Peng, and H. Liu, “Quantification of light reflectance spectroscopy and its application: determination of hemodynamics on the rat spinal cord and brain induced by electrical stimulation,” Neuroimage56(3), 1316–1328 (2011). [CrossRef] [PubMed]
  22. D. W. Hosmer, and S. Lemeshow, Applied Logistic Regression (Wiley, 2000).
  23. MATLAB, version 7.13.0 (R2011b) (The Mathworks, Inc., Natick, Massachusetts, 2011).
  24. N. J. Perkins and E. F. Schisterman, “The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve,” Am. J. Epidemiol.163(7), 670–675 (2006). [CrossRef] [PubMed]
  25. T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning, data mining, inference, and prediction (Springer, 2008).
  26. A. Ng, “Machine learning course at Stanford (CS229) lecture notes,” (2011).
  27. H. Liu, Y. Gu, J. G. Kim, and R. P. Mason, “Near-infrared spectroscopy and imaging of tumor vascular oxygenation,” Methods Enzymol.386, 349–378 (2004). [CrossRef] [PubMed]
  28. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia2(1/2), 89–117 (2000). [CrossRef] [PubMed]
  29. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998). [PubMed]
  30. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, “Time-domain fluorescence lifetime imaging applied to biological tissue,” Photochem. Photobiol. Sci.3(8), 795–801 (2004). [CrossRef] [PubMed]
  31. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010). [CrossRef] [PubMed]
  32. A. Mukerjee, T. J. Sørensen, A. P. Ranjan, S. Raut, I. Gryczynski, J. K. Vishwanatha, and Z. Gryczynski, “Spectroscopic properties of curcumin: orientation of transition moments,” J. Phys. Chem. B114(39), 12679–12684 (2010). [CrossRef] [PubMed]
  33. R. Luchowski, Z. Gryczynski, P. Sarkar, J. Borejdo, M. Szabelski, P. Kapusta, and I. Gryczynski, “Instrument response standard in time-resolved fluorescence,” Rev. Sci. Instrum.80(3), 033109 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited