OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 8 — Aug. 1, 2012
  • pp: 1841–1854

Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples

Shwetadwip Chowdhury, Al-Hafeez Dhalla, and Joseph Izatt  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 8, pp. 1841-1854 (2012)
http://dx.doi.org/10.1364/BOE.3.001841


View Full Text Article

Enhanced HTML    Acrobat PDF (1543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many biological structures of interest are beyond the diffraction limit of conventional microscopes and their visualization requires application of super-resolution techniques. Such techniques have found remarkable success in surpassing the diffraction limit to achieve sub-diffraction limited resolution; however, they are predominantly limited to fluorescent samples. Here, we introduce a non-fluorescent analogue to structured illumination microscopy, termed structured oblique illumination microscopy (SOIM), where we use simultaneous oblique illuminations of the sample to multiplex high spatial-frequency content into the frequency support of the system. We introduce a theoretical framework describing how to demodulate this multiplexed information to reconstruct an image with a spatial-frequency support exceeding that of the system’s classical diffraction limit. This approach allows enhanced-resolution imaging of non-fluorescent samples. Experimental confirmation of the approach is obtained in a reflection test target with moderate numerical aperture.

© 2012 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(100.6640) Image processing : Superresolution
(180.0180) Microscopy : Microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 25, 2012
Revised Manuscript: June 13, 2012
Manuscript Accepted: June 24, 2012
Published: July 12, 2012

Citation
Shwetadwip Chowdhury, Al-Hafeez Dhalla, and Joseph Izatt, "Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples," Biomed. Opt. Express 3, 1841-1854 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-8-1841


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Pawley, Handbook of Biological Confocal Microscopy (Springer Science+Business Media, New York, 1989).
  2. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1959).
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  5. M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opin. Chem. Biol.12(5), 505–514 (2008). [CrossRef] [PubMed]
  6. X. Zhuang, “Nano-imaging with Storm,” Nat. Photonics3(7), 365–367 (2009). [CrossRef] [PubMed]
  7. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  8. S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. (Berl.)60(5), 495–497 (1995). [CrossRef]
  9. M. Gustafsson, D. Agard, and J. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” Proc. SPIE3919, 141–150 (2000). [CrossRef]
  10. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  11. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift estimation in sinusoidally illuminated images for lateral superresolution,” J. Opt. Soc. Am. A26(2), 413–424 (2009). [CrossRef] [PubMed]
  12. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A19(8), 1599–1609 (2002). [CrossRef] [PubMed]
  13. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  14. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012). [CrossRef] [PubMed]
  15. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am.56(11), 1463–1471 (1966). [CrossRef]
  16. P. C. Sun and E. N. Leith, “Superresolution by spatial-temporal encoding methods,” Appl. Opt.31(23), 4857–4862 (1992). [CrossRef] [PubMed]
  17. B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron38(2), 150–157 (2007). [CrossRef] [PubMed]
  18. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express18(18), 19263–19272 (2010). [CrossRef] [PubMed]
  19. A. Mudassar, A. R. Harvey, A. H. Greenaway, and J. D. C. Jones, “Resolution beyond classical limites with spatial frequency heterodyning,” Chin. Opt. Lett.4(3), 148–151 (2006).
  20. J. Goodman, Introduction to Fourier Optics (Roberts & Company, Greenwood Village, CO, 2005).
  21. F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process.21(2), 601–614 (2012). [CrossRef] [PubMed]
  22. J. Prince and J. Links, Medical Imaging Signals and Systems (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited