OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 8 — Aug. 1, 2012
  • pp: 1865–1879

Strain estimation in phase-sensitive optical coherence elastography

Brendan F. Kennedy, Sze Howe Koh, Robert A. McLaughlin, Kelsey M. Kennedy, Peter R. T. Munro, and David D. Sampson  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 8, pp. 1865-1879 (2012)
http://dx.doi.org/10.1364/BOE.3.001865


View Full Text Article

Enhanced HTML    Acrobat PDF (5682 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical framework for strain estimation in optical coherence elastography (OCE), based on a statistical analysis of displacement measurements obtained from a mechanically loaded sample. We define strain sensitivity, signal-to-noise ratio and dynamic range, and derive estimates of strain using three methods: finite difference, ordinary least squares and weighted least squares, the latter implemented for the first time in OCE. We compare theoretical predictions with experimental results and demonstrate a ~12 dB improvement in strain sensitivity using weighted least squares compared to finite difference strain estimation and a ~4 dB improvement over ordinary least squares strain estimation. We present strain images (i.e., elastograms) of tissue-mimicking phantoms and excised porcine airway, demonstrating in each case clear contrast based on the sample’s elasticity.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(290.5820) Scattering : Scattering measurements
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: May 10, 2012
Revised Manuscript: June 28, 2012
Manuscript Accepted: July 12, 2012
Published: July 17, 2012

Citation
Brendan F. Kennedy, Sze Howe Koh, Robert A. McLaughlin, Kelsey M. Kennedy, Peter R. T. Munro, and David D. Sampson, "Strain estimation in phase-sensitive optical coherence elastography," Biomed. Opt. Express 3, 1865-1879 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-8-1865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003). [CrossRef] [PubMed]
  2. J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999). [CrossRef] [PubMed]
  3. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998). [CrossRef] [PubMed]
  4. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004). [CrossRef] [PubMed]
  5. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004). [CrossRef] [PubMed]
  6. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng.12(1), 63–73 (2006). [CrossRef] [PubMed]
  7. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer-Verlag, Berlin, 2008).
  8. B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett.35(14), 2445–2447 (2010). [CrossRef] [PubMed]
  9. B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” J. Biomed. Opt.16(2), 020506 (2011). [CrossRef] [PubMed]
  10. T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Opt. Lett.35(12), 1998–2000 (2010). [CrossRef] [PubMed]
  11. R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006). [CrossRef]
  12. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007). [CrossRef]
  13. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008). [CrossRef] [PubMed]
  14. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express18(25), 25519–25534 (2010). [CrossRef] [PubMed]
  15. X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express18(13), 14183–14190 (2010). [CrossRef] [PubMed]
  16. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011). [CrossRef] [PubMed]
  17. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  18. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).
  19. F. Kallel and J. Ophir, “A least-squares strain estimator for elastography,” Ultrason. Imaging19(3), 195–208 (1997). [PubMed]
  20. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009). [CrossRef] [PubMed]
  21. A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010). [CrossRef] [PubMed]
  22. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  23. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging13(2), 111–134 (1991). [CrossRef] [PubMed]
  24. I. Cespedes, M. Insana, and J. Ophir, “Theoretical bounds on strain estimation in elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control42(5), 969–972 (1995). [CrossRef]
  25. J. Fox, Applied Regression Analysis, Linear Models and Related Methods (Sage, Thousand Oaks, Calif., 1997).
  26. T. Varghese and J. Ophir, “A theoretical framework for performance characterization of elastography: the strain filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 164–172 (1997). [CrossRef] [PubMed]
  27. J. I. Jackson and L. J. Thomas, “Ultrasound-based strain rate estimation of moving, fully developed speckle,” in 2001 IEEE Ultrasonic Symposium (IEEE, 2001), Vol. 2, pp. 1593–1596.
  28. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Phase contrast coherence microscopy based on transverse scanning,” Opt. Lett.34(12), 1750–1752 (2009). [CrossRef] [PubMed]
  29. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography—limitations and improvements,” Opt. Lett.33(13), 1425–1427 (2008). [CrossRef] [PubMed]
  30. S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol.54(10), 3129–3139 (2009). [CrossRef] [PubMed]
  31. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science276(5321), 2037–2039 (1997). [CrossRef] [PubMed]
  32. S. Han, N. H. El-Abbadi, N. Hanna, U. Mahmood, R. Mina-Araghi, W. G. Jung, Z. Chen, H. Colt, and M. Brenner, “Evaluation of tracheal imaging by optical coherence tomography,” Respiration72(5), 537–541 (2005). [CrossRef] [PubMed]
  33. J. K. Rains, J. L. Bert, C. R. Roberts, and P. D. Paré, “Mechanical properties of human tracheal cartilage,” J. Appl. Physiol.72(1), 219–225 (1992). [PubMed]
  34. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Sixth International Conference on Computer Vision, 1998 (IEEE, 1998), 839–846.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited