OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 8 — Aug. 1, 2012
  • pp: 1880–1890

Dual-mode laparoscopic fluorescence image-guided surgery using a single camera

Daniel C. Gray, Evgenia M. Kim, Victoria E. Cotero, Anshika Bajaj, V. Paul Staudinger, Cristina A. Tan Hehir, and Siavash Yazdanfar  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 8, pp. 1880-1890 (2012)
http://dx.doi.org/10.1364/BOE.3.001880


View Full Text Article

Enhanced HTML    Acrobat PDF (2011 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Iatrogenic nerve damage is a leading cause of morbidity associated with many common surgical procedures. Complications arising from these injuries may result in loss of function and/or sensation, muscle atrophy, and chronic neuropathy. Fluorescence image-guided surgery offers a potential solution for avoiding intraoperative nerve damage by highlighting nerves that are otherwise difficult to visualize. In this work we present the development of a single camera, dual-mode laparoscope that provides near simultaneous display of white-light and fluorescence images of nerves. The capability of the instrumentation is demonstrated through imaging several types of in situ rat nerves via a nerve specific contrast agent. Full color white light and high brightness fluorescence images and video of nerves as small as 100 µm in diameter are presented.

© 2012 OSA

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Endoscopes, Catheters and Micro-Optics

History
Original Manuscript: May 15, 2012
Revised Manuscript: June 26, 2012
Manuscript Accepted: July 1, 2012
Published: July 17, 2012

Citation
Daniel C. Gray, Evgenia M. Kim, Victoria E. Cotero, Anshika Bajaj, V. Paul Staudinger, Cristina A. Tan Hehir, and Siavash Yazdanfar, "Dual-mode laparoscopic fluorescence image-guided surgery using a single camera," Biomed. Opt. Express 3, 1880-1890 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-8-1880


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. Michaelson, S. E. Cotter, P. C. Gargollo, A. L. Zietman, D. M. Dahl, and M. R. Smith, “Management of complications of prostate cancer treatment,” CA Cancer J. Clin.58(4), 196–213 (2008). [CrossRef] [PubMed]
  2. J. Walz, M. Graefen, and H. Huland, “Basic principles of anatomy for optimal surgical treatment of prostate cancer,” World J. Urol.25(1), 31–38 (2007). [CrossRef] [PubMed]
  3. J. Bruce, N. Drury, A. S. Poobalan, R. R. Jeffrey, W. C. Smith, and W. A. Chambers, “The prevalence of chronic chest and leg pain following cardiac surgery: a historical cohort study,” Pain104(1-2), 265–273 (2003). [CrossRef] [PubMed]
  4. A. D. Sharma, C. L. Parmley, G. Sreeram, and H. P. Grocott, “Peripheral nerve injuries during cardiac surgery: risk factors, diagnosis, prognosis, and prevention,” Anesth. Analg.91(6), 1358–1369 (2000). [CrossRef] [PubMed]
  5. P. Aluffi, M. Policarpo, C. Cherovac, M. Olina, R. Dosdegani, and F. Pia, “Post-thyroidectomy superior laryngeal nerve injury,” Eur. Arch. Otorhinolaryngol.258(9), 451–454 (2001). [CrossRef] [PubMed]
  6. D. S. Cooper, “Thyroxine monotherapy after thyroidectomy: coming full circle,” JAMA299(7), 817–819 (2008). [CrossRef] [PubMed]
  7. L. Macdonald, J. Bruce, N. W. Scott, W. C. Smith, and W. A. Chambers, “Long-term follow-up of breast cancer survivors with post-mastectomy pain syndrome,” Br. J. Cancer92(2), 225–230 (2005). [PubMed]
  8. E. L. Poleshuck, J. Katz, C. H. Andrus, L. A. Hogan, B. F. Jung, D. I. Kulick, and R. H. Dworkin, “Risk factors for chronic pain following breast cancer surgery: a prospective study,” J. Pain7(9), 626–634 (2006). [CrossRef] [PubMed]
  9. R. K. Portenoy, “Overview of pain,” in The Merck Manual of Diagnosis and Therapy, 18th ed., M. H. Beers, R. S. Porter, and T. V. Jones, eds. (Merck, Rahway, 2006).
  10. J. Rehman, G. J. Christ, A. Kaynan, D. Samadi, and J. Fleischmann, “Intraoperative electrical stimulation of cavernosal nerves with monitoring of intracorporeal pressure in patients undergoing nerve sparing radical prostatectomy,” BJU Int.84(3), 305–310 (1999). [CrossRef] [PubMed]
  11. A. Katahira, H. Niikura, Y. Kaiho, H. Nakagawa, K. Kurokawa, Y. Arai, and N. Yaegashi, “Intraoperative electrical stimulation of the pelvic splanchnic nerves during nerve-sparing radical hysterectomy,” Gynecol. Oncol.98(3), 462–466 (2005). [CrossRef] [PubMed]
  12. T. M. Peters, “Image-guidance for surgical procedures,” Phys. Med. Biol.51(14), R505–R540 (2006). [CrossRef] [PubMed]
  13. L. B. Boyette, M. A. Reardon, A. J. Mirelman, T. D. Kirkley, J. J. Lysiak, J. B. Tuttle, and W. D. Steers, “Fiberoptic imaging of cavernous nerves in vivo,” J. Urol.178(6), 2694–2700 (2007). [CrossRef] [PubMed]
  14. Y. Fu, T. B. Huff, H.-W. Wang, J.-X. Cheng, and H. Wang, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008). [CrossRef] [PubMed]
  15. R. Yadav, S. Mukherjee, M. Hermen, G. Tan, F. R. Maxfield, W. W. Webb, and A. K. Tewari, “Multiphoton microscopy of prostate and periprostatic neural tissue: a promising imaging technique for improving nerve-sparing prostatectomy,” J. Endourol.23(5), 861–867 (2009). [CrossRef] [PubMed]
  16. M. A. Whitney, J. L. Crisp, L. T. Nguyen, B. Friedman, L. A. Gross, P. Steinbach, R. Y. Tsien, and Q. T. Nguyen, “Fluorescent peptides highlight peripheral nerves during surgery in mice,” Nat. Biotechnol.29(4), 352–356 (2011). [CrossRef] [PubMed]
  17. S. L. Gibbs-Strauss, K. A. Nasr, K. M. Fish, O. Khullar, Y. Ashitate, T. M. Siclovan, B. F. Johnson, N. E. Barnhardt, C. A. Tan Hehir, and J. V. Frangioni, “Nerve-highlighting fluorescent contrast agents for image-guided surgery,” Mol. Imaging10(2), 91–101 (2011). [PubMed]
  18. V. E. Cotero, T. Siclovan, R. Zhang, R. L. Carter, A. Bajaj, N. E. LaPlante, E. Kim, D. Gray, V. P. Staudinger, S. Yazdanfar, and C. A. Tan Hehir, “Intraoperative fluorescence imaging of peripheral and central nerves through a myelin-selective contrast agent,” Mol. Imaging Biol. (2012) (online first).
  19. T. P. Gustafson, Y. Yan, P. Newton, D. A. Hunter, S. Achilefu, W. J. Akers, S. E. Mackinnon, P. J. Johnson, and M. Y. Berezin, “A NIR dye for development of peripheral nerve targeted probes,” MedChemComm.3(6), 685–690 (2012). [CrossRef]
  20. S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping,” Ann. Surg. Oncol.16(10), 2943–2952 (2009). [CrossRef] [PubMed]
  21. N. Tagaya, A. Nakagawa, A. Abe, Y. Iwasaki, and K. Kubota, “Non-invasive identification of sentinel lymph nodes using indocyanine green fluorescence imaging in patients with breast cancer,” Open Surg. Oncol. J.2(2), 71–74 (2010). [CrossRef]
  22. H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, and F. W. B. van Leeuwen, “Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer,” Eur. Urol.60(4), 826–833 (2011). [CrossRef] [PubMed]
  23. S. Tobis, J. Knopf, C. Silvers, J. Yao, H. Rashid, G. Wu, and D. Golijanin, “Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors,” J. Urol.186(1), 47–52 (2011). [CrossRef] [PubMed]
  24. G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med.17(10), 1315–1319 (2011). [CrossRef] [PubMed]
  25. B. W. Pogue, S. L. Gibbs-Strauss, P. A. Valdés, K. S. Samkoe, D. W. Roberts, and K. D. Paulsen, “Review of neurosurgical fluorescence imaging methodologies,” IEEE J. Sel. Top. Quantum Electron.16(3), 493–505 (2010). [CrossRef] [PubMed]
  26. S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation,” Mol. Imaging9(5), 237–255 (2010). [PubMed]
  27. V. Ntziachristos, J. S. Yoo, and G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt.15(6), 066024 (2010). [CrossRef] [PubMed]
  28. S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. van Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. van der Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. van de Velde, R. J. Baatenburg de Jong, and C. W. G. M. Löwik, “Optical image-guided surgery--where do we stand?” Mol. Imaging Biol.13(2), 199–207 (2011). [CrossRef] [PubMed]
  29. J. S. D. Mieog, A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, M. Drijfhout van Hooff, J. Dijkstra, P. J. K. Kuppen, R. Keijzer, E. L. Kaijzel, I. Que, C. J. H. van de Velde, and C. W. G. M. Löwik, “Novel intraoperative near-infrared fluorescence camera system for optical image-guided cancer surgery,” Mol. Imaging9(4), 223–231 (2010). [PubMed]
  30. D. P. Taggart, B. Choudhary, K. Anastasiadis, Y. Abu-Omar, L. Balacumaraswami, and D. W. Pigott, “Preliminary experience with a novel intraoperative fluorescence imaging technique to evaluate the patency of bypass grafts in total arterial revascularization,” Ann. Thorac. Surg.75(3), 870–873 (2003). [CrossRef] [PubMed]
  31. X. Wang, S. Bhaumik, Q. Li, V. P. Staudinger, and S. Yazdanfar, “Compact instrument for fluorescence image-guided surgery,” J. Biomed. Opt.15(2), 020509 (2010). [CrossRef] [PubMed]
  32. J. W. Kakareka, T. E. McCann, N. Kosaka, M. Mitsunaga, N. Y. Morgan, T. J. Pohida, P. L. Choyke, and H. Kobayashi, “A portable fluorescence camera for testing surgical specimens in the operating room: description and early evaluation,” Mol. Imaging Biol.13(5), 862–867 (2011). [CrossRef] [PubMed]
  33. Y. Liu, A. Q. Bauer, W. J. Akers, G. Sudlow, K. Liang, D. Shen, M. Y. Berezin, J. P. Culver, and S. Achilefu, “Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery,” Surgery149(5), 689–698 (2011). [CrossRef] [PubMed]
  34. P. S. Adusumilli, D. P. Eisenberg, B. M. Stiles, S. Chung, M. K. Chan, V. W. Rusch, and Y. Fong, “Intraoperative localization of lymph node metastases with a replication-competent herpes simplex virus,” J. Thorac. Cardiovasc. Surg.132(5), 1179–1188.e1 (2006). [CrossRef] [PubMed]
  35. H. S. Tran Cao, S. Kaushal, C. Lee, C. S. Snyder, K. J. Thompson, S. Horgan, M. A. Talamini, R. M. Hoffman, and M. Bouvet, “Fluorescence laparoscopy imaging of pancreatic tumor progression in an orthotopic mouse model,” Surg. Endosc.25(1), 48–54 (2011). [CrossRef] [PubMed]
  36. J. Gahlen, R. L. Prosst, M. Pietschmann, T. Haase, M. Rheinwald, G. Skopp, J. Stern, and C. Herfarth, “Laparoscopic fluorescence diagnosis for intraabdominal fluorescence targeting of peritoneal carcinosis experimental studies,” Ann. Surg.235(2), 252–260 (2002). [CrossRef] [PubMed]
  37. K. Ponnusamy, J. M. Sorger, and C. Mohr, “Nerve mapping for prostatectomies: novel technologies under development,” J. Endourol. (to be published). [PubMed]
  38. M. C. Jacobson, R. deVere White, and S. G. Demos, “In vivo testing of a prototype system providing simultaneous white light and near infrared autofluorescence image acquisition for detection of bladder cancer,” J. Biomed. Opt.17(3), 036011 (2012). [CrossRef] [PubMed]
  39. G. Themelis, J. S. Yoo, and V. Ntziachristos, “Multispectral imaging using multiple-bandpass filters,” Opt. Lett.33(9), 1023–1025 (2008). [CrossRef] [PubMed]
  40. L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt.15(1), 010502 (2010). [CrossRef] [PubMed]
  41. S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, “Liquid-crystal tunable filter spectral imaging for brain tumor demarcation,” Appl. Opt.46(10), 1896–1910 (2007). [CrossRef] [PubMed]
  42. R. Sun, M. B. Bouchard, and E. M. C. Hillman, “SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition,” Biomed. Opt. Express1(2), 385–397 (2010). [CrossRef] [PubMed]
  43. G. A. Reynolds and K. H. Drexhage, “New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers,” Opt. Commun.13(3), 222–225 (1975). [CrossRef]
  44. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., (Springer, New York, 2006).
  45. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol.7(5), 626–634 (2003). [CrossRef] [PubMed]
  46. E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt.13(4), 041303 (2008). [CrossRef] [PubMed]
  47. D. Schellingerhout, L. G. Le Roux, S. Bredow, and J. G. Gelovani, “Fluorescence imaging of fast retrograde axonal transport in living animals,” Mol. Imaging8(6), 319–329 (2009). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2348 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited