OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 8 — Aug. 1, 2012
  • pp: 1898–1913

3D resolved mapping of optical aberrations in thick tissues

Jun Zeng, Pierre Mahou, Marie-Claire Schanne-Klein, Emmanuel Beaurepaire, and Delphine Débarre  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 8, pp. 1898-1913 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3503 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a simple method for mapping optical aberrations with 3D resolution within thick samples. The method relies on the local measurement of the variation in image quality with externally applied aberrations. We discuss the accuracy of the method as a function of the signal strength and of the aberration amplitude and we derive the achievable resolution for the resulting measurements. We then report on measured 3D aberration maps in human skin biopsies and mouse brain slices. From these data, we analyse the consequences of tissue structure and refractive index distribution on aberrations and imaging depth in normal and cleared tissue samples. The aberration maps allow the estimation of the typical aplanetism region size over which aberrations can be uniformly corrected. This method and data pave the way towards efficient correction strategies for tissue imaging applications.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.6900) Microscopy : Three-dimensional microscopy
(180.4315) Microscopy : Nonlinear microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Active and Adaptive Optics

Original Manuscript: June 19, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 17, 2012
Published: July 20, 2012

Jun Zeng, Pierre Mahou, Marie-Claire Schanne-Klein, Emmanuel Beaurepaire, and Delphine Débarre, "3D resolved mapping of optical aberrations in thick tissues," Biomed. Opt. Express 3, 1898-1913 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Nat. Acad. Sci.99, 5788–5792 (2002). [CrossRef] [PubMed]
  2. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express11, 1123–1130 (2003). [CrossRef] [PubMed]
  3. M. Rueckel, J. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Nat. Acad. Sci.103, 17137–17142 (2006). [CrossRef] [PubMed]
  4. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34, 2495–2497 (2009). [CrossRef] [PubMed]
  5. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7, 141–147 (2009). [CrossRef] [PubMed]
  6. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express2, 3135–3149 (2011). [CrossRef] [PubMed]
  7. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics”, Opt. Express20, 2598–2612 (2012). [CrossRef] [PubMed]
  8. N. Olivier, D. Débarre, and E. Beaurepaire, “Dynamic aberration correction for multiharmonic microscopy,” Opt. Lett.34, 3145–3147 (2009). [CrossRef] [PubMed]
  9. D. Débarre, A. Facomprez, and E. Beaurepaire, “Assessing correction accuracy in image-based adaptive optics,” Proc. SPIE8253, 82530F (2012). [CrossRef]
  10. H. Ait El Madani, E. Tancrède-Bohin, A. Bensussan, A. Colonna, A. Dupuy, M. Bagot, and A. -M. Pena, “In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation,” J. Biomed. Opt.17, 026009 (2012). [CrossRef]
  11. K. König and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt.8, 432–439 (2003). [CrossRef] [PubMed]
  12. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express16, 9290–9305 (2008). [CrossRef] [PubMed]
  13. M. Kaatz, A. Sturm, P. Elsner, K. König, R. Buckle, and M. J. Koehler, “Depth-resolved measurement of the dermal matrix composition by multiphoton laser tomography,” Skin Res. Technol.16, 131–136 (2010). [CrossRef] [PubMed]
  14. J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450, 56–62 (2007). [CrossRef] [PubMed]
  15. J. Binding, J. Ben Arous, J. -F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express19, 4833–4847 (2011). [CrossRef] [PubMed]
  16. J. Sun, S. J. Lee, L. Wu, M. Sarntinoranont, and H. Xie, “Refractive index measurement of acute rat brain tissue slices using optical coherence tomography,” Opt. Express20, 1084–1095 (2012). [CrossRef] [PubMed]
  17. Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Nat. Acad. Sci.98, 3790–3795 (2001). [CrossRef] [PubMed]
  18. N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Nat. Acad. Sci.109, 22–27 (2012). [CrossRef]
  19. H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci.14, 1481–1488 (2011). [CrossRef] [PubMed]
  20. M. Hart, “Recent advances in astronomical adaptive optics,” Appl. Opt.49, D17–D29 (2010). [CrossRef] [PubMed]
  21. N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (11406 KB)     
» Media 2: AVI (3710 KB)     
» Media 3: AVI (4541 KB)     
» Media 4: AVI (1500 KB)     
» Media 5: AVI (1803 KB)     
» Media 6: AVI (10104 KB)     
» Media 7: AVI (47822 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited