OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 8 — Aug. 1, 2012
  • pp: 1933–1946

Measurement of the oxidation state of mitochondrial cytochrome c from the neocortex of the mammalian brain

Y. Sakata, M. Abajian, M. O. Ripple, and R. Springett  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 8, pp. 1933-1946 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffuse optical remission spectra from the mammalian neocortex at visible wavelengths contain spectral features originating from the mitochondria. A new algorithm is presented, based on analytically relating the first differential of the attenuation spectrum to the first differential of the chromophore spectra, that can separate and calculate the oxidation state of cytochrome c as well as the absolute concentration and saturation of hemoglobin. The algorithm is validated in phantoms and then tested on the neocortex of the rat during an anoxic challenge. Implementation of the algorithm will provide detailed information of mitochondrial oxygenation and mitochondrial function in physiological studies of the mammalian brain.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: June 6, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 21, 2012
Published: July 25, 2012

Y. Sakata, M. Abajian, M. O. Ripple, and R. Springett, "Measurement of the oxidation state of mitochondrial cytochrome c from the neocortex of the mammalian brain," Biomed. Opt. Express 3, 1933-1946 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Snyder, E. B. Gutierrez-Cirlos, and B. L. Trumpower, “Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex,” J. Biol. Chem.275(18), 13535–13541 (2000). [CrossRef] [PubMed]
  2. P. R. Rich, I. C. West, and P. Mitchell, “The location of CuA in mammalian cytochrome c oxidase,” FEBS Lett.233(1), 25–30 (1988). [CrossRef] [PubMed]
  3. C. Hunte, H. Palsdottir, and B. L. Trumpower, “Protonmotive pathways and mechanisms in the cytochrome bc1 complex,” FEBS Lett.545(1), 39–46 (2003). [CrossRef] [PubMed]
  4. B. Chance and G. R. Williams, “The respiratory chain and oxidative phosphorylation,” Adv. Enzymol. Relat. Subj. Biochem.17, 65–134 (1956). [PubMed]
  5. J. E. Morgan and M. Wikström, “Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria,” Biochemistry30(4), 948–958 (1991). [CrossRef] [PubMed]
  6. J. G. Lindsay, P. L. Dutton, and D. F. Wilson, “Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart,” Biochemistry11(10), 1937–1943 (1972). [CrossRef] [PubMed]
  7. V. S. Hollis, M. Palacios-Callender, R. J. Springett, D. T. Delpy, and S. Moncada, “Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-wavelength visible light spectroscopy,” Biochim. Biophys. Acta1607(2-3), 191–202 (2003). [CrossRef] [PubMed]
  8. F. G. Hempel, F. F. Jöbsis, J. L. LaManna, M. R. Rosenthal, and H. A. Saltzman, “Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures,” J. Appl. Physiol.43(5), 873–879 (1977). [PubMed]
  9. F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol.43(5), 858–872 (1977). [PubMed]
  10. N. R. Kreisman, T. J. Sick, J. C. LaManna, and M. Rosenthal, “Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo,” Brain Res.218(1-2), 161–174 (1981). [CrossRef] [PubMed]
  11. A. E. Arai, C. E. Kasserra, P. R. Territo, A. H. Gandjbakhche, and R. S. Balaban, “Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes,” Am. J. Physiol.277(2 Pt 2), H683–H697 (1999). [PubMed]
  12. J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage10(3), 304–326 (1999). [CrossRef] [PubMed]
  13. D. Malonek and A. Grinvald, “Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping,” Science272(5261), 551–554 (1996). [CrossRef] [PubMed]
  14. S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, “Imaging optical reflectance in rodent barrel and forelimb sensory cortex,” Neuroimage1(3), 181–190 (1994). [CrossRef] [PubMed]
  15. D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A.94(26), 14826–14831 (1997). [CrossRef] [PubMed]
  16. M. Jones, J. Berwick, and J. Mayhew, “Changes in blood flow, oxygenation, and volume following extended stimulation of rodent barrel cortex,” Neuroimage15(3), 474–487 (2002). [CrossRef] [PubMed]
  17. U. Lindauer, J. Gethmann, M. Kühl, M. Kohl-Bareis, and U. Dirnagl, “Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia,” Brain Res.975(1-2), 135–140 (2003). [CrossRef] [PubMed]
  18. M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol.45(12), 3749–3764 (2000). [CrossRef] [PubMed]
  19. R. B. Buxton, “The elusive initial dip,” Neuroimage13(6), 953–958 (2001). [CrossRef] [PubMed]
  20. M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage13(6), 1002–1015 (2001). [CrossRef] [PubMed]
  21. J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage13(6), 975–987 (2001). [CrossRef] [PubMed]
  22. U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage13(6), 988–1001 (2001). [CrossRef] [PubMed]
  23. I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage13(6), 959–967 (2001). [CrossRef] [PubMed]
  24. E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett.29(14), 1650–1652 (2004). [CrossRef] [PubMed]
  25. M. Paoli, J. Marles-Wright, and A. Smith, “Structure-function relationships in heme-proteins,” DNA Cell Biol.21(4), 271–280 (2002). [CrossRef] [PubMed]
  26. C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol.428, 449–456 (1997). [CrossRef] [PubMed]
  27. R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2202–H2209 (2000). [PubMed]
  28. G. L. Liao and G. Palmer, “The reduced minus oxidized difference spectra of cytochromes a and a3,” Biochim. Biophys. Acta1274(3), 109–111 (1996). [CrossRef] [PubMed]
  29. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998). [CrossRef] [PubMed]
  30. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J.93, 70–83 (1941). [CrossRef]
  31. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  32. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  33. D. F. Wilson, M. Erecińska, C. Drown, and I. A. Silver, “Effect of oxygen tension on cellular energetics,” Am. J. Physiol.233(5), C135–C140 (1977). [PubMed]
  34. G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab.22(5), 515–519 (2002). [CrossRef] [PubMed]
  35. J. C. Finlay and T. H. Foster, “Effect of pigment packaging on diffuse reflectance spectroscopy of samples containing red blood cells,” Opt. Lett.29(9), 965–967 (2004). [CrossRef] [PubMed]
  36. R. Springett, M. Wylezinska, E. B. Cady, M. Cope, and D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab.20(2), 280–289 (2000). [CrossRef] [PubMed]
  37. D. R. Green and G. Kroemer, “The pathophysiology of mitochondrial cell death,” Science305(5684), 626–629 (2004). [CrossRef] [PubMed]
  38. M. O. Ripple, M. Abajian, and R. Springett, “Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization,” Apoptosis15(5), 563–573 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited