OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 1972–1977

Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy

Ke Wang, Tzu-Ming Liu, Juwell Wu, Nicholas G. Horton, Charles P. Lin, and Chris Xu  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 9, pp. 1972-1977 (2012)
http://dx.doi.org/10.1364/BOE.3.001972


View Full Text Article

Enhanced HTML    Acrobat PDF (2719 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a fiber-based, three-color femtosecond source for simultaneous imaging of three fluorescent proteins (FPs) using two-photon fluorescence microscopy (2PM). The three excitation wavelengths at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation (SHG) of the 1550-nm pump laser and the 1728-nm and 1900-nm solitons generated through soliton self-frequency shift (SSFS) in a large-mode-area (LMA) fiber. These energetic pulses are well matched to the two-photon excitation peaks of red, cyan and yellow fluorescent proteins (TagRFPs, TagCFPs, and TagYFPs) for efficient excitation. We demonstrate simultaneous 2PM of human melanoma cells expressing a “rainbow” combination of these three fluorescent proteins.

© 2012 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(180.2520) Microscopy : Fluorescence microscopy
(190.2620) Nonlinear optics : Harmonic generation and mixing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: June 28, 2012
Revised Manuscript: July 25, 2012
Manuscript Accepted: July 25, 2012
Published: July 31, 2012

Citation
Ke Wang, Tzu-Ming Liu, Juwell Wu, Nicholas G. Horton, Charles P. Lin, and Chris Xu, "Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy," Biomed. Opt. Express 3, 1972-1977 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-9-1972


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science263(5148), 802–805 (1994). [CrossRef] [PubMed]
  2. J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007). [CrossRef] [PubMed]
  3. Z. Fan, J. A. Spencer, Y. Lu, C. M. Pitsillides, G. Singh, P. Kim, S. H. Yun, V. Toxavidis, T. B. Strom, C. P. Lin, and M. Koulmanda, “In vivo tracking of ‘color-coded’ effector, natural and induced regulatory T cells in the allograft response,” Nat. Med.16(6), 718–722 (2010). [CrossRef] [PubMed]
  4. K. Yamauchi, M. Yang, P. Jiang, M. Xu, N. Yamamoto, H. Tsuchiya, K. Tomita, A. R. Moossa, M. Bouvet, and R. M. Hoffman, “Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system,” Cancer Res.66(8), 4208–4214 (2006). [CrossRef] [PubMed]
  5. K. Weber, M. Thomaschewski, M. Warlich, T. Volz, K. Cornils, B. Niebuhr, M. Täger, M. Lütgehetmann, J. M. Pollok, C. Stocking, M. Dandri, D. Benten, and B. Fehse, “RGB marking facilitates multicolor clonal cell tracking,” Nat. Med.17(4), 504–509 (2011). [CrossRef] [PubMed]
  6. K. Hope and M. Bhatia, “Clonal interrogation of stem cells,” Nat. Methods8(4Suppl), S36–S40 (2011). [CrossRef] [PubMed]
  7. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  8. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011). [CrossRef] [PubMed]
  9. D. Entenberg, J. B. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011). [CrossRef] [PubMed]
  10. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett.11(10), 662–664 (1986). [CrossRef] [PubMed]
  11. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett.11(3), 325–327 (1999). [CrossRef]
  12. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett.26(6), 358–360 (2001). [CrossRef] [PubMed]
  13. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301(5640), 1705–1708 (2003). [CrossRef] [PubMed]
  14. K. Wang and C. Xu, “Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source,” Opt. Lett.36(6), 942–944 (2011). [CrossRef] [PubMed]
  15. K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett.99(7), 071112 (2011). [CrossRef]
  16. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  17. N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulses using optical fibers,” IEEE Photon. Technol. Lett.11(4), 421–423 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited