OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 1993–2003

Biomolecule kinetics measurements in flow cell integrated porous silicon waveguides

Xing Wei, Jeremy W. Mares, Yandong Gao, Deyu Li, and Sharon M. Weiss  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 9, pp. 1993-2003 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A grating-coupled porous silicon (PSi) waveguide with an integrated polydimethylsiloxane (PDMS) flow cell is demonstrated as a platform for near real-time detection of chemical and biological molecules. This sensor platform not only allows for quantification of molecular binding events, but also provides a means to improve understanding of diffusion and binding mechanisms in constricted nanoscale geometries. Molecular binding events in the waveguide are monitored by angle-resolved reflectance measurements. Diffusion coefficients and adsorption and desorption rate constants of different sized chemical linkers and nucleic acid molecules are determined based on the rate of change of the measured resonance angle. Experimental results show that the diffusion coefficient in PSi is smaller than that in free solutions, and the PSi morphology slows the molecular adsorption rate constant by a factor of 102–104 compared to that of flat surface interactions. Calculations based on simplified mass balance equations and COMSOL simulations give good agreement with experimental data.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.2790) Integrated optics : Guided waves
(130.6010) Integrated optics : Sensors

ToC Category:
Biosensors and Molecular Diagnostics

Original Manuscript: June 13, 2012
Manuscript Accepted: July 23, 2012
Published: July 31, 2012

Xing Wei, Jeremy W. Mares, Yandong Gao, Deyu Li, and Sharon M. Weiss, "Biomolecule kinetics measurements in flow cell integrated porous silicon waveguides," Biomed. Opt. Express 3, 1993-2003 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. D. Yin and X. S. Zhao, “Kinetics and dynamics of DNA hybridization,” Acc. Chem. Res.44(11), 1172–1181 (2011). [CrossRef] [PubMed]
  2. H. N. Daghestani and B. W. Day, “Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors,” Sensors (Basel)10(11), 9630–9646 (2010). [CrossRef] [PubMed]
  3. J. J. Ramsden, S. Y. Li, J. E. Prenosil, and E. Heinzle, “Kinetics of adhesion and spreading of animal cells,” Biotechnol. Bioeng.43(10), 939–945 (1994). [CrossRef] [PubMed]
  4. N. Darwish, D. Caballero, M. Moreno, A. Errachid, and J. Samitier, “Multi-analytic grating coupler biosensor for differential binding analysis,” Sens. Actuators B Chem.144(2), 413–417 (2010). [CrossRef]
  5. N. Kim, I. S. Park, and W. Y. Kim, “Salmonella detection with a direct-binding optical grating coupler immunosensor,” Sens. Actuators B Chem.121(2), 606–615 (2007). [CrossRef]
  6. V. Goral, Q. Wu, H. Y. Sun, and Y. Fang, “Label-free optical biosensor with microfluidics for sensing ligand-directed functional selectivity on trafficking of thrombin receptor,” FEBS Lett.585(7), 1054–1060 (2011). [CrossRef] [PubMed]
  7. P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011). [CrossRef]
  8. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007). [CrossRef] [PubMed]
  9. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002). [CrossRef] [PubMed]
  10. T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett.36(17), 3320–3322 (2011). [CrossRef] [PubMed]
  11. Z. A. Lai, Y. L. Wang, N. Allbritton, G. P. Li, and M. Bachman, “Label-free biosensor by protein grating coupler on planar optical waveguides,” Opt. Lett.33(15), 1735–1737 (2008). [CrossRef] [PubMed]
  12. J. N. Yih, Y. M. Chu, Y. C. Mao, W. H. Wang, F. C. Chien, C. Y. Lin, K. L. Lee, P. K. Wei, and S. J. Chen, “Optical waveguide biosensors constructed with subwavelength gratings,” Appl. Opt.45(9), 1938–1942 (2006). [CrossRef] [PubMed]
  13. X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express19(12), 11330–11339 (2011). [CrossRef] [PubMed]
  14. X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys.104(12), 123113 (2008). [CrossRef]
  15. T. D. Lazzara, I. Mey, C. Steinem, and A. Janshoff, “Benefits and limitations of porous substrates as biosensors for protein adsorption,” Anal. Chem.83(14), 5624–5630 (2011). [CrossRef] [PubMed]
  16. A. W. Marczewski, “Analysis of kinetic Langmuir model. Part I: Integrated kinetic Langmuir equation (IKL): a new complete analytical solution of the Langmuir rate equation,” Langmuir26(19), 15229–15238 (2010). [CrossRef] [PubMed]
  17. G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng.3(1), 335–373 (2001). [CrossRef] [PubMed]
  18. J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res.35(7), 491–499 (2002). [CrossRef] [PubMed]
  19. H. K. Wu, B. Huang, and R. N. Zare, “Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding,” Lab Chip5(12), 1393–1398 (2005). [CrossRef] [PubMed]
  20. J. L. Lawrie, Y. Jiao, and S. M. Weiss, “Size-dependent infiltration and optical detection of nucleic acids in nanoscale pores,” IEEE Trans. NanoTechnol.9(5), 596–602 (2010). [CrossRef]
  21. J. W. Mares and S. M. Weiss, “Diffusion dynamics of small molecules from mesoporous silicon films by real-time optical interferometry,” Appl. Opt.50(27), 5329–5337 (2011). [CrossRef] [PubMed]
  22. Y. Gao, L. K. Wolf, and R. M. Georgiadis, “Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison,” Nucleic Acids Res.34(11), 3370–3377 (2006). [CrossRef] [PubMed]
  23. H. Matsuyama, M. Teramoto, and K. Suzuki, “Simulation of solute diffusion through porous media,” Sep. Sci. Technol.32(14), 2349–2366 (1997). [CrossRef]
  24. D. Mu, Z.-S. Liu, C. Huang, and N. Djilali, “Determination of the effective diffusion coefficient in porous media including Knudsen effects,” Microfluid. Nanofluid.4(3), 257–260 (2008). [CrossRef]
  25. K. P. Saripalli, R. J. Serne, P. D. Meyer, and B. P. McGrail, “Prediction of diffusion coefficients in porous media using tortuosity factors based on interfacial areas,” Ground Water40(4), 346–352 (2002). [CrossRef] [PubMed]
  26. A. E. Nkodo, J. M. Garnier, B. Tinland, H. J. Ren, C. Desruisseaux, L. C. McCormick, G. Drouin, and G. W. Slater, “Diffusion coefficient of DNA molecules during free solution electrophoresis,” Electrophoresis22(12), 2424–2432 (2001). [CrossRef] [PubMed]
  27. J. H. Park and N. R. Aluru, “Water film thickness-dependent conformation and diffusion of single-strand DNA on poly(ethylene glycol)-silane surface,” Appl. Phys. Lett.96(12), 123703 (2010). [CrossRef] [PubMed]
  28. E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, and M. S. Strano, “Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes,” Nano Lett.6(3), 371–375 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited