OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2111–2120

Cell death detection by quantitative three-dimensional single-cell tomography

Nai-Chia Cheng, Tsung-Hsun Hsieh, Yu-Ta Wang, Chien-Chih Lai, Chia-Kai Chang, Ming-Yi Lin, Ding-Wei Huang, Jeng-Wei Tjiu, and Sheng-Lung Huang  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 9, pp. 2111-2120 (2012)
http://dx.doi.org/10.1364/BOE.3.002111


View Full Text Article

Enhanced HTML    Acrobat PDF (3307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrahigh-resolution optical coherence tomography (UR-OCT) has been used for the first time to our knowledge to study single-cell basal cell carcinoma (BCC) in vitro. This noninvasive, in situ, label-free technique with deep imaging depth enables three-dimensional analysis of scattering properties of single cells with cellular spatial resolution. From three-dimensional UR-OCT imaging, live and dead BCC cells can be easily identified based on morphological observation. We developed a novel method to automatically extract characteristic parameters of a single cell from data volume, and quantitative comparison and parametric analysis were performed. The results demonstrate the capability of UR-OCT to detect cell death at the cellular level.

© 2012 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(170.1530) Medical optics and biotechnology : Cell analysis
(170.1870) Medical optics and biotechnology : Dermatology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Cell Studies

History
Original Manuscript: June 13, 2012
Revised Manuscript: July 24, 2012
Manuscript Accepted: August 2, 2012
Published: August 13, 2012

Citation
Nai-Chia Cheng, Tsung-Hsun Hsieh, Yu-Ta Wang, Chien-Chih Lai, Chia-Kai Chang, Ming-Yi Lin, Ding-Wei Huang, Jeng-Wei Tjiu, and Sheng-Lung Huang, "Cell death detection by quantitative three-dimensional single-cell tomography," Biomed. Opt. Express 3, 2111-2120 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-9-2111


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Spencer and P. K. Sorger, “Measuring and modeling apoptosis in single cells,” Cell144(6), 926–939 (2011). [CrossRef] [PubMed]
  2. K. E. Gascoigne and S. S. Taylor, “Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs,” Cancer Cell14(2), 111–122 (2008). [CrossRef] [PubMed]
  3. H. C. Huang, T. J. Mitchison, and J. Shi, “Stochastic competition between mechanistically independent slippage and death pathways determines cell fate during mitotic arrest,” PLoS ONE5(12), e15724 (2010). [CrossRef] [PubMed]
  4. S. V. Sharma, D. Y. Lee, B. Li, M. P. Quinlan, F. Takahashi, S. Maheswaran, U. McDermott, N. Azizian, L. Zou, M. A. Fischbach, K. K. Wong, K. Brandstetter, B. Wittner, S. Ramaswamy, M. Classon, and J. Settleman, “A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations,” Cell141(1), 69–80 (2010). [CrossRef] [PubMed]
  5. A. A. Cohen, N. Geva-Zatorsky, E. Eden, M. Frenkel-Morgenstern, I. Issaeva, A. Sigal, R. Milo, C. Cohen-Saidon, Y. Liron, Z. Kam, L. Cohen, T. Danon, N. Perzov, and U. Alon, “Dynamic proteomics of individual cancer cells in response to a drug,” Science322(5907), 1511–1516 (2008). [CrossRef] [PubMed]
  6. M. Niepel, S. L. Spencer, and P. K. Sorger, “Non-genetic cell-to-cell variability and the consequences for pharmacology,” Curr. Opin. Chem. Biol.13(5-6), 556–561 (2009). [CrossRef] [PubMed]
  7. A. Raj and A. van Oudenaarden, “Nature, nurture, or chance: stochastic gene expression and its consequences,” Cell135(2), 216–226 (2008). [CrossRef] [PubMed]
  8. O. J. Rando and K. J. Verstrepen, “Timescales of genetic and epigenetic inheritance,” Cell128(4), 655–668 (2007). [CrossRef] [PubMed]
  9. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature414(6859), 105–111 (2001). [CrossRef] [PubMed]
  10. S. L. Spencer, S. Gaudet, J. G. Albeck, J. M. Burke, and P. K. Sorger, “Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis,” Nature459(7245), 428–432 (2009). [CrossRef] [PubMed]
  11. S. Earley, C. Vinegoni, J. Dunham, R. Gorbatov, P. F. Feruglio, and R. Weissleder, “In vivo imaging of drug-induced mitochondrial outer membrane permeabilization at single-cell resolution,” Cancer Res.72(12), 2949–2956 (2012). [CrossRef] [PubMed]
  12. J. D. Orth, R. H. Kohler, F. Foijer, P. K. Sorger, R. Weissleder, and T. J. Mitchison, “Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics,” Cancer Res.71(13), 4608–4616 (2011). [CrossRef] [PubMed]
  13. J. G. Albeck, J. M. Burke, B. B. Aldridge, M. Zhang, D. A. Lauffenburger, and P. K. Sorger, “Quantitative analysis of pathways controlling extrinsic apoptosis in single cells,” Mol. Cell30(1), 11–25 (2008). [CrossRef] [PubMed]
  14. S. B. Nicholls, J. Chu, G. Abbruzzese, K. D. Tremblay, and J. A. Hardy, “Mechanism of a genetically encoded dark-to-bright reporter for caspase activity,” J. Biol. Chem.286(28), 24977–24986 (2011). [CrossRef] [PubMed]
  15. M. J. Pittet and R. Weissleder, “Intravital imaging,” Cell147(5), 983–991 (2011). [CrossRef] [PubMed]
  16. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008). [CrossRef] [PubMed]
  17. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  18. W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, “Optical coherence tomography of cell dynamics in three-dimensional tissue models,” Opt. Express14(16), 7159–7171 (2006). [CrossRef] [PubMed]
  19. X. Liang, B. W. Graf, and S. A. Boppart, “Imaging engineered tissues using structural and functional optical coherence tomography,” J. Biophotonics2(11), 643–655 (2009). [CrossRef] [PubMed]
  20. W. C. Kuo, C. H. Chan, C. H. Chou, and J. C. Cheng, “Swept source optical coherence tomography for radiation-enhanced hepatocellular carcinoma cell invasion imaging,” Phys. Med. Biol.54(13), 4289–4297 (2009). [CrossRef] [PubMed]
  21. S. M. Rey, B. Povazay, B. Hofer, A. Unterhuber, B. Hermann, A. Harwood, and W. Drexler, “Three- and four-dimensional visualization of cell migration using optical coherence tomography,” J. Biophotonics2(6-7), 370–379 (2009). [CrossRef] [PubMed]
  22. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011). [CrossRef] [PubMed]
  23. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998). [CrossRef]
  24. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt.42(34), 6953–6958 (2003). [CrossRef] [PubMed]
  25. P. O. Bagnaninchi, C. Holmes, N. Drummond, J. Daoud, and M. Tabrizian, “Two-dimensional and three-dimensional viability measurements of adult stem cells with optical coherence phase microscopy,” J. Biomed. Opt.16(8), 086003 (2011). [CrossRef] [PubMed]
  26. J. P. Dunkers, Y. J. Lee, and K. Chatterjee, “Single cell viability measurements in 3D scaffolds using in situ label free imaging by optical coherence microscopy,” Biomaterials33(7), 2119–2126 (2012). [CrossRef] [PubMed]
  27. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett.30(16), 2131–2133 (2005). [CrossRef] [PubMed]
  28. Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, T. Murakami, and F. Traganos, “Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis),” Cytometry27(1), 1–20 (1997). [CrossRef] [PubMed]
  29. Y. Reis, M. Bernardo-Faura, D. Richter, T. Wolf, B. Brors, A. Hamacher-Brady, R. Eils, and N. R. Brady, “Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis,” PLoS ONE7(1), e28694 (2012). [CrossRef] [PubMed]
  30. M. Rehberg, F. Krombach, U. Pohl, and S. Dietzel, “Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy,” PLoS ONE6(11), e28237 (2011). [CrossRef] [PubMed]
  31. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  32. X. Zhang, M. B. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” ChemPhysChem13(4), 1054–1059 (2012). [CrossRef] [PubMed]
  33. J. W. Tjiu, Y. H. Liao, S. J. Lin, Y. L. Huang, W. L. Tsai, C. Y. Chu, M. L. Kuo, and S. H. Jee, “Cyclooxygenase-2 overexpression in human basal cell carcinoma cell line increases antiapoptosis, angiogenesis, and tumorigenesis,” J. Invest. Dermatol.126(5), 1143–1151 (2006). [CrossRef] [PubMed]
  34. J. W. Tjiu, J. S. Chen, C. T. Shun, S. J. Lin, Y. H. Liao, C. Y. Chu, T. F. Tsai, H. C. Chiu, Y. S. Dai, H. Inoue, P. C. Yang, M. L. Kuo, and S. H. Jee, “Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction,” J. Invest. Dermatol.129(4), 1016–1025 (2009). [CrossRef] [PubMed]
  35. C. C. Tsai, T. H. Chen, Y. S. Lin, Y. T. Wang, W. Chang, K. Y. Hsu, Y. H. Chang, P. K. Hsu, D. Y. Jheng, K. Y. Huang, E. Sun, and S. L. Huang, “Ce3+:YAG double-clad crystal-fiber-based optical coherence tomography on fish cornea,” Opt. Lett.35(6), 811–813 (2010). [CrossRef] [PubMed]
  36. I. Csiki, J. D. Morrow, A. Sandler, Y. Shyr, J. Oates, M. K. Williams, T. Dang, D. P. Carbone, and D. H. Johnson, “Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: a phase II trial of celecoxib and docetaxel,” Clin. Cancer Res.11(18), 6634–6640 (2005). [CrossRef] [PubMed]
  37. K. L. Reckamp, K. Krysan, J. D. Morrow, G. L. Milne, R. A. Newman, C. Tucker, R. M. Elashoff, S. M. Dubinett, and R. A. Figlin, “A phase I trial to determine the optimal biological dose of celecoxib when combined with erlotinib in advanced non-small cell lung cancer,” Clin. Cancer Res.12(11), 3381–3388 (2006). [CrossRef] [PubMed]
  38. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38(16), 3651–3661 (1999). [CrossRef] [PubMed]
  39. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37(16), 3586–3593 (1998). [CrossRef] [PubMed]
  40. Z. Darzynkiewicz, E. Bedner, and P. Smolewski, “Flow cytometry in analysis of cell cycle and apoptosis,” Semin. Hematol.38(2), 179–193 (2001). [CrossRef] [PubMed]
  41. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8(1), 7–16 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited