OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2154–2161

Human tissue color as viewed in high dynamic range optical spectral transmission measurements

Georgi I. Petrov, Alexander Doronin, Harry T. Whelan, Igor Meglinski, and Vladislav V. Yakovlev  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 9, pp. 2154-2161 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2731 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High dynamic range optical-to-near-infrared transmission measurements for different parts of human body in the spectral range from 650 to 950 nm have been performed. Experimentally measured spectra are correlated with Monte Carlo simulations using chromaticity coordinates in CIE 1976 L*a*b* color space. Both a qualitative and a quantitative agreement have been found, paving a new way of characterizing human tissues in vivo. The newly developed experimental and computational platform for assessing tissue transmission spectra is anticipated to have a considerable impact on identifying favorable conditions for laser surgery and optical diagnostics, while providing supplementary information about tissue properties.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(200.4960) Optics in computing : Parallel processing
(300.6550) Spectroscopy : Spectroscopy, visible
(330.1730) Vision, color, and visual optics : Colorimetry
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: June 18, 2012
Revised Manuscript: August 8, 2012
Manuscript Accepted: August 8, 2012
Published: August 20, 2012

Virtual Issues
BIOMED 2012 (2012) Biomedical Optics Express

Georgi I. Petrov, Alexander Doronin, Harry T. Whelan, Igor Meglinski, and Vladislav V. Yakovlev, "Human tissue color as viewed in high dynamic range optical spectral transmission measurements," Biomed. Opt. Express 3, 2154-2161 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]
  3. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods7(8), 603–614 (2010). [CrossRef] [PubMed]
  4. H. Key, E. R. Davies, P. C. Jackson, and P. N. T. Wells, “Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths,” Phys. Med. Biol.36(5), 579–590 (1991). [CrossRef] [PubMed]
  5. D. B. Sarwer, T. A. Wadden, and L. A. Whitaker, “An investigation of changes in body image following cosmetic surgery,” Plast. Reconstr. Surg.109(1), 363–369, discussion 370–371 (2002). [CrossRef] [PubMed]
  6. H. Y. S. Li, Y. Qiao, and D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt.32(26), 5026–5035 (1993). [CrossRef] [PubMed]
  7. D. E. J. G. J. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer3(5), 380–387 (2003). [CrossRef] [PubMed]
  8. J. T. Eells, M. M. Henry, P. Summerfelt, M. T. Wong-Riley, E. V. Buchmann, M. Kane, N. T. Whelan, and H. T. Whelan, “Therapeutic photobiomodulation for methanol-induced retinal toxicity,” Proc. Natl. Acad. Sci. U.S.A.100(6), 3439–3444 (2003). [CrossRef] [PubMed]
  9. V. V. Yakovlev, H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, “Stimulated Raman photoacoustic imaging,” Proc. Natl. Acad. Sci. U.S.A.107(47), 20335–20339 (2010). [CrossRef] [PubMed]
  10. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  11. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  12. N. V. Tkachenko, Optical Spectroscopy: Methods and Instrumentations (Elsevier Science, 2006).
  13. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  14. G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “Broadband nonlinear optical conversion of a high-energy diode-pumped picosecond laser,” Opt. Commun.229, 441–445 (2004). [CrossRef]
  15. G. I. Petrov and V. V. Yakovlev, “Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy,” Opt. Express13(4), 1299–1306 (2005). [CrossRef] [PubMed]
  16. A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express2(9), 2461–2469 (2011). [CrossRef] [PubMed]
  17. I. Meglinski and A. Doronin, “Online Monte Carlo for biomedical optics,” SPIE Newsroom, Nov.7, 2011, http://spie.org/x57619.xml .
  18. G. Donner, H. W-Jensen, “A spectral BSSRDF for shading human skin,” EGSR Symposium (2006).
  19. I. V. Meglinski, “Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique,” Quantum Electron.31, 1101–1107 (2001).
  20. I. V. Meglinski and S. J. Matcher, “Computer simulation of the skin reflectance spectra,” Comput. Methods Programs Biomed.70(2), 179–186 (2003). [CrossRef] [PubMed]
  21. A. Doronin, I. Fine, and I. Meglinski, “Assessment of the calibration curve for transmittance pulse-oximetry,” Laser Phys.21(11), 1972–1977 (2011). [CrossRef]
  22. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin,” Appl. Opt.34(31), 7410–7418 (1995). [CrossRef] [PubMed]
  23. D. H. Brainard, “Color appearance and color difference specification,” In The Science of Color, S. K. Shevell, ed. (Elsevier, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited