OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2220–2233

Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography

Zhongwei Zhi, William O. Cepurna, Elaine C. Johnson, John C. Morrison, and Ruikang K. Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 3, Issue 9, pp. 2220-2233 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we demonstrate the use of optical coherence tomography/optical microangiography (OCT/OMAG) to image and measure the effects of acute intraocular pressure (IOP) elevation on retinal, choroidal and optic nerve head (ONH) perfusion in the rat eye. In the experiments, IOP was elevated from 10 to 100 mmHg in 10 mmHg increments. At each IOP level, three-dimensional data volumes were captured using an ultrahigh sensitive (UHS) OMAG scanning protocol for 3D volumetric perfusion imaging, followed by repeated B-scans for Doppler OMAG analysis to determine blood flow velocity. Velocity and vessel diameter measurements were used to calculate blood flow in selected retinal blood vessels. Choroidal perfusion was calculated by determining the peripapillary choroidal filling at each pressure level and calculating this as a percentage of area filling at baseline (10 mmHg). ONH blood perfusion was calculated as the percentage of blood flow area over a segmented ONH area to a depth 150 microns posterior to the choroidal opening. We show that volumetric blood flow reconstructions revealed detailed 3D maps, to the capillary level, of the retinal, choroidal and ONH microvasculature, revealing retinal arterioles, capillaries and veins, the choroidal opening and a consistent presence of the central retinal artery inferior to the ONH. While OCT structural images revealed a reversible compression of the ONH and vasculature with elevated IOP, OMAG successfully documented changes in retinal, choroidal and ONH blood perfusion and allowed quantitative measurements of these changes. Starting from 30 mm Hg, retinal blood flow (RBF) diminished linearly with increasing IOP and was nearly extinguished at 100 mm Hg, with full recovery after return of IOP to baseline. Choroidal filling was unaffected until IOP reached 60 mmHg, then decreased to 20% of baseline at IOP 100 mmHg, and normalized when IOP returned to baseline. A reduction in ONH blood perfusion at higher IOP’s was also observed, but shadow from overlying retinal vessels at lower IOP’s limited precise measurements of changes in ONH capillary perfusion compared to baseline. Therefore, OCT/OMAG can be a useful tool to image and measure blood flow in the retina, choroidal and ONH of the rat eye as well as document the effects of elevated IOP on blood flow in these vascular beds.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Ophthalmology Applications

Original Manuscript: July 13, 2012
Manuscript Accepted: August 13, 2012
Published: August 24, 2012

Zhongwei Zhi, William O. Cepurna, Elaine C. Johnson, John C. Morrison, and Ruikang K. Wang, "Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography," Biomed. Opt. Express 3, 2220-2233 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002). [CrossRef] [PubMed]
  2. M. C. Grieshaber and J. Flammer, “Blood flow in glaucoma,” Curr. Opin. Ophthalmol.16(2), 79–83 (2005). [CrossRef] [PubMed]
  3. J. E. Grunwald, J. Piltz, S. M. Hariprasad, and J. DuPont, “Optic nerve and choroidal circulation in glaucoma,” Invest. Ophthalmol. Vis. Sci.39(12), 2329–2336 (1998). [PubMed]
  4. C. E. Riva, J. E. Grunwald, and B. L. Petrig, “Autoregulation of human retinal blood flow. An investigation with laser Doppler velocimetry,” Invest. Ophthalmol. Vis. Sci.27(12), 1706–1712 (1986). [PubMed]
  5. K. R. Brein and C. E. Riva, “Laser Doppler velocimetry measurement of pulsatile blood flow in capillary tubes,” Microvasc. Res.24(1), 114–118 (1982). [CrossRef] [PubMed]
  6. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci.26(8), 1124–1132 (1985). [PubMed]
  7. F. Binaghi, F. Cannas, and F. Pitzus, “La flussimetria Doppler laser. Principi ed applicazioni cliniche nelle acrosindromi vascolari [Laser Doppler flowmetry. principles and clinical applications in vascular acro-syndromes],” Minerva Med.79(10), 831–838 (1988). [PubMed]
  8. C. E. Riva, “Basic principles of laser Doppler flowmetry and application to the ocular circulation,” Int. Ophthalmol.23(4/6), 183–189 (2001). [CrossRef] [PubMed]
  9. Z. He, C. T. Nguyen, J. A. Armitage, A. J. Vingrys, and B. V. Bui, “Blood pressure modifies retinal susceptibility to intraocular pressure elevation,” PLoS ONE7(2), e31104 (2012). [CrossRef] [PubMed]
  10. A. Harris, D. R. Anderson, L. Pillunat, K. Joos, R. W. Knighton, L. Kagemann, and B. J. Martin, “Laser Doppler flowmetry measurement of changes in human optic nerve head blood flow in response to blood gas perturbations,” J. Glaucoma5(4), 258–265 (1996). [CrossRef] [PubMed]
  11. C. E. Riva, S. Harino, B. L. Petrig, and R. D. Shonat, “Laser Doppler flowmetry in the optic nerve,” Exp. Eye Res.55(3), 499–506 (1992). [CrossRef] [PubMed]
  12. K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol.129(6), 734–739 (2000). [CrossRef] [PubMed]
  13. B. L. Petrig, C. E. Riva, and S. S. Hayreh, “Laser Doppler flowmetry and optic nerve head blood flow,” Am. J. Ophthalmol.127(4), 413–425 (1999). [CrossRef] [PubMed]
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  15. D. S. Chauhan and J. Marshall, “The interpretation of optical coherence tomography images of the retina,” Invest. Ophthalmol. Vis. Sci.40(10), 2332–2342 (1999). [PubMed]
  16. M. E. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res.26(1), 57–77 (2007). [CrossRef] [PubMed]
  17. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  18. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  19. Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci.52(2), 840–845 (2011). [CrossRef] [PubMed]
  20. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  21. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  22. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  23. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010). [CrossRef] [PubMed]
  24. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010). [CrossRef] [PubMed]
  25. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express2(3), 579–591 (2011). [CrossRef] [PubMed]
  26. R. Varma, P. P. Lee, I. Goldberg, and S. Kotak, “An assessment of the health and economic burdens of glaucoma,” Am. J. Ophthalmol.152(4), 515–522 (2011). [CrossRef] [PubMed]
  27. M. D. Roberts, I. A. Sigal, Y. Liang, C. F. Burgoyne, and J. C. Downs, “Changes in the biomechanical response of the optic nerve head in early experimental glaucoma,” Invest. Ophthalmol. Vis. Sci.51(11), 5675–5684 (2010). [CrossRef] [PubMed]
  28. J. C. Morrison, W. O. Cepurna, Y. Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma,” Exp. Eye Res.93(2), 156–164 (2011). [CrossRef] [PubMed]
  29. I. H. Pang and A. F. Clark, “Rodent models for glaucoma retinopathy and optic neuropathy,” J. Glaucoma16(5), 483–505 (2007). [CrossRef] [PubMed]
  30. Y. Guo, E. C. Johnson, W. O. Cepurna, J. A. Dyck, T. Doser, and J. C. Morrison, “Early gene expression changes in the retinal ganglion cell layer of a rat glaucoma model,” Invest. Ophthalmol. Vis. Sci.52(3), 1460–1473 (2011). [CrossRef] [PubMed]
  31. E. C. Johnson, T. A. Doser, W. O. Cepurna, J. A. Dyck, L. Jia, Y. Guo, W. S. Lambert, and J. C. Morrison, “Cell proliferation and interleukin-6-type cytokine signaling are implicated by gene expression responses in early optic nerve head injury in rat glaucoma,” Invest. Ophthalmol. Vis. Sci.52(1), 504–518 (2011). [CrossRef] [PubMed]
  32. Y. Liang, J. C. Downs, B. Fortune, G. Cull, G. A. Cioffi, and L. Wang, “Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates,” Invest. Ophthalmol. Vis. Sci.50(5), 2154–2160 (2009). [CrossRef] [PubMed]
  33. Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express2(5), 1059–1068 (2011). [CrossRef] [PubMed]
  34. T. Fukuchi, K. Takahashi, and K. Shou, “Optical coherence tomography (OCT) findings in normal retina and laser-induced choroidal neovascularization in rats,” Graefes Arch. Clin. Exp. Ophthalmol.239(1), 41–46 (2001). [CrossRef] [PubMed]
  35. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010). [CrossRef] [PubMed]
  36. C. Geijer and A. Bill, “Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys,” Invest. Ophthalmol. Vis. Sci.18(10), 1030–1042 (1979). [PubMed]
  37. Z. He, A. J. Vingrys, J. A. Armitage, and B. V. Bui, “The role of blood pressure in glaucoma,” Clin. Exp. Optom.94(2), 133–149 (2011). [CrossRef] [PubMed]
  38. Y. Jia, P. Li, and R. K. Wang, “Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice,” J. Biomed. Opt.16(9), 096019 (2011). [CrossRef] [PubMed]
  39. Y. Jia, P. Li, S. Dziennis, and R. K. Wang, “Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography,” PLoS ONE6(10), e26802 (2011). [CrossRef] [PubMed]
  40. J. C. Morrison, E. Johnson, and W. O. Cepurna, “Rat models for glaucoma research,” Prog. Brain Res.173, 285–301 (2008). [CrossRef] [PubMed]
  41. B. Fortune, T. E. Choe, J. Reynaud, C. Hardin, G. A. Cull, C. F. Burgoyne, and L. Wang, “Deformation of the rodent optic nerve head and peripapillary structures during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.52(9), 6651–6661 (2011). [CrossRef] [PubMed]
  42. J. C. Morrison, C. G. Moore, L. M. Deppmeier, B. G. Gold, C. K. Meshul, and E. C. Johnson, “A rat model of chronic pressure-induced optic nerve damage,” Exp. Eye Res.64(1), 85–96 (1997). [CrossRef] [PubMed]
  43. J. C. Morrison, E. C. Johnson, W. O. Cepurna, and R. H. Funk, “Microvasculature of the rat optic nerve head,” Invest. Ophthalmol. Vis. Sci.40(8), 1702–1709 (1999). [PubMed]
  44. C. Dai, P. T. Khaw, Z. Q. Yin, D. Li, G. Raisman, and Y. Li, “Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure,” Glia60(1), 13–28 (2012). [CrossRef] [PubMed]
  45. M. Pazos, S. Gardiner, J. G. J. Reynaud, W. O. Cepurna, E. C. Johnson, J. C. Morrison, C. F. Burgoyne, and H. Yang, “Radial optic nerve expansion within the expanding scleral canal in the hypertonic saline rat early experimental glaucoma (EEG) model,” Invest. Ophthalmol. Vis. Sci.51, 4806 (2010).
  46. B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005). [CrossRef] [PubMed]
  47. L. Fizanne, B. Fromy, M. P. Preckel, D. Sigaudo-Roussel, and J. L. Saumet, “Effect of isoflurane on skin-pressure-induced vasodilation,” J. Vasc. Res.40(4), 416–422 (2003). [CrossRef] [PubMed]
  48. R. F. Leoni, F. F. Paiva, E. C. Henning, G. C. Nascimento, A. Tannús, D. B. de Araujo, and A. C. Silva, “Magnetic resonance imaging quantification of regional cerebral blood flow and cerebrovascular reactivity to carbon dioxide in normotensive and hypertensive rats,” Neuroimage58(1), 75–81 (2011). [CrossRef] [PubMed]
  49. W. C. Seyde and D. E. Longnecker, “Cerebral oxygen tension in rats during deliberate hypotension with sodium nitroprusside, 2-chloroadenosine, or deep isoflurane anesthesia,” Anesthesiology64(4), 480–485 (1986). [CrossRef] [PubMed]
  50. G. Weigert, O. Findl, A. Luksch, G. Rainer, B. Kiss, C. Vass, and L. Schmetterer, “Effects of moderate changes in intraocular pressure on ocular hemodynamics in patients with primary open-angle glaucoma and healthy controls,” Ophthalmology112(8), 1337–1342 (2005). [CrossRef] [PubMed]
  51. L. E. Pillunat, D. R. Anderson, R. W. Knighton, K. M. Joos, and W. J. Feuer, “Autoregulation of human optic nerve head circulation in response to increased intraocular pressure,” Exp. Eye Res.64(5), 737–744 (1997). [CrossRef] [PubMed]
  52. C. E. Riva, S. D. Cranstoun, and B. L. Petrig, “Effect of decreased ocular perfusion pressure on blood flow and the flicker-induced flow response in the cat optic nerve head,” Microvasc. Res.52(3), 258–269 (1996). [CrossRef] [PubMed]
  53. N. Sossi and D. R. Anderson, “Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125,” Arch. Ophthalmol.101(1), 98–101 (1983). [CrossRef] [PubMed]
  54. A. Alm and A. Bill, “The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues,” Acta Physiol. Scand.84(3), 306–319 (1972). [CrossRef] [PubMed]
  55. J. W. Kiel and A. P. Shepherd, “Autoregulation of choroidal blood flow in the rabbit,” Invest. Ophthalmol. Vis. Sci.33(8), 2399–2410 (1992). [PubMed]
  56. E. Polska, C. Simader, G. Weigert, A. Doelemeyer, J. Kolodjaschna, O. Scharmann, and L. Schmetterer, “Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure,” Invest. Ophthalmol. Vis. Sci.48(8), 3768–3774 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited