OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 3, Iss. 9 — Sep. 1, 2012
  • pp: 2263–2272

Spectral domain detection in low-coherence spectroscopy

Nienke Bosschaart, Maurice C. G. Aalders, Ton G. van Leeuwen, and Dirk J. Faber  »View Author Affiliations


Biomedical Optics Express, Vol. 3, Issue 9, pp. 2263-2272 (2012)
http://dx.doi.org/10.1364/BOE.3.002263


View Full Text Article

Enhanced HTML    Acrobat PDF (1283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low-coherence spectroscopy (LCS) offers the valuable possibility to measure quantitative and wavelength resolved optical property spectra within a tissue volume of choice that is controllable both in size and in depth. Until now, only time domain detection was investigated for LCS (tdLCS), but spectral domain detection offers a theoretical speed/sensitivity advantage over tdLCS. In this article, we introduce a method for spectral domain detection in LCS (sdLCS), with optimal sensitivity as a function of measurement depth. We validate our method computationally in a simulation and experimentally on a phantom with known optical properties. The attenuation, absorption and scattering coefficient spectra from the phantom that were measured by sdLCS agree well with the expected optical properties and the measured optical properties by tdLCS.

© 2012 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(160.4760) Materials : Optical properties
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: June 27, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 13, 2012
Published: August 27, 2012

Citation
Nienke Bosschaart, Maurice C. G. Aalders, Ton G. van Leeuwen, and Dirk J. Faber, "Spectral domain detection in low-coherence spectroscopy," Biomed. Opt. Express 3, 2263-2272 (2012)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-9-2263


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett.34(23), 3746–3748 (2009). [CrossRef] [PubMed]
  2. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011). [CrossRef] [PubMed]
  3. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt.16(10), 100504 (2011). [CrossRef] [PubMed]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  5. D. J. Faber and T. G. van Leeuwen, “Optical coherence tomography,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Springer Science & Business Media, 2010), Chap. 18.
  6. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett.25(11), 820–822 (2000). [CrossRef] [PubMed]
  7. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003). [CrossRef] [PubMed]
  8. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express17(8), 6799–6812 (2009). [CrossRef] [PubMed]
  9. D. J. Faber and T. G. van Leeuwen, “Doppler calibration method for spectral domain OCT spectrometers,” J Biophotonics2(6-7), 407–415 (2009). [CrossRef] [PubMed]
  10. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett.30(2), 147–149 (2005). [CrossRef] [PubMed]
  11. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004). [CrossRef] [PubMed]
  12. G. Häusler and M. Linder, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998). [CrossRef]
  13. Data tabulated from various sources compiled by S. Prahl, “Optical properties spectra,” http://omlc.ogi.edu/spectra .
  14. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited