OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 1 — Jan. 1, 2013
  • pp: 15–31

Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy

Debabrata Sikdar, Ivan D. Rukhlenko, Wenlong Cheng, and Malin Premaratne  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 1, pp. 15-31 (2013)
http://dx.doi.org/10.1364/BOE.4.000015


View Full Text Article

Enhanced HTML    Acrobat PDF (3630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Despite much research efforts being devoted to the design optimization of metallic nanoshells, no account is taken of the fact that the number of the nanoshells that can be delivered to a given cancerous site vary with their size. In this paper, we study the effect of the nanoshell number density on the absorption and scattering properties of a gold-nanoshell ensemble exposed to a broadband near-infrared radiation, and optimize the nanoshells’ dimensions for efficient cancer treatment by analyzing a wide range of human tissues. We first consider the general situation in which the number of the delivered nanoshells decreases with their mean radius R as ∝ Rβ, and demonstrate that the optimal design of nanoshells required to treat cancer most efficiently depends critically on β. In the case of β = 2, the maximal energy absorbed (scattered) by the ensemble is achieved for the same dimensions that maximize the absorption (scattering) efficiency of a single nanoshell. We thoroughly study this special case by the example of gold nanoshells with silica core. To ensure that minimal thermal injury is caused to the healthy tissue surrounding a cancerous site, we estimate the optimal dimensions that minimize scattering by the nanoshells for a desired value of the absorption efficiency. The comparison of gold nanoshells with different cores shows that hollow nanoshells exhibiting relatively low absorption efficiency are less harmful to the healthy tissue and, hence, are preferred over the strongly absorbing nanoshells. For each of the cases analyzed, we provide approximate analytical expressions for the optimal nanoshell dimensions, which may be used as design guidelines by experimentalists, in order to optimize the synthesis of gold nanoshells for treating different types of human cancer at their various growth stages.

© 2012 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(350.5340) Other areas of optics : Photothermal effects
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: October 31, 2012
Revised Manuscript: November 29, 2012
Manuscript Accepted: November 29, 2012
Published: December 5, 2012

Citation
Debabrata Sikdar, Ivan D. Rukhlenko, Wenlong Cheng, and Malin Premaratne, "Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy," Biomed. Opt. Express 4, 15-31 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-1-15


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol.6, 268–276 (2011). [CrossRef] [PubMed]
  2. V. P. Pattani and J. W. Tunnell, “Nanoparticle-mediated photothermal therapy: A comparative study of heating for different particle types,” Lasers Surg. Med.44, 675–684 (2012). [CrossRef] [PubMed]
  3. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, “A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies,” Small7, 169–183 (2011). [CrossRef] [PubMed]
  4. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010). [CrossRef] [PubMed]
  5. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res.41, 1842–1851 (2008). [CrossRef] [PubMed]
  6. M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olson, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy,” Mol. Cancer Ther.7, 1730–1739 (2008). [CrossRef] [PubMed]
  7. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci.23, 217–228 (2008). [CrossRef]
  8. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat.3, 33–40 (2004). [PubMed]
  9. V. U. Fiedler, H. J. Schwarzmaier, F. Eickmeyer, F. P. Muller, C. Schoepp, and P. R. Verreet, “Laser-induced interstitial thermotherapy of liver metastases in an interventional 0.5 Tesla MRI system: Technique and first clinical experiences,” J. Magn. Reson. Imaging13, 729–737 (2001). [CrossRef] [PubMed]
  10. F. Y. Cheng, C. T. Chen, and C. S. Yeh, “Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods,” Nanotechnol.20, 425104 (2009). [CrossRef]
  11. T. A. Erickson and J. W. Tunnell, “Gold nanoshells in biomedical applications,” in Mixed Metal Nanomaterials, C. S. S. R. Kumar, ed., Vol. 3 of Nanomaterials for the Life Sciences (Wiley-VCH, Weinheim, 2009), pp. 1–44.
  12. P. Puvanakrishnan, J. Park, D. Chatterjee, S. Krishnan, and J. W. Tunnell, “In vivo tumor targeting of gold nanoparticles: Effect of particle type and dosing strategy,” Int. J. Nanomed.7, 1251–1258 (2012). [CrossRef]
  13. S. Y. Liu, Z. S. Liang, F. Gao, S. F. Luo, and G. Q. Lu, “In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells,” J. Mater. Sci. Mater. Med.21, 665–674 (2010). [CrossRef]
  14. R. J. Bernardi, A. R. Lowery, P. A. Thompson, S. M. Blaney, and J. L. West, “Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines,” J. Neurooncol.86, 165–172 (2008). [CrossRef]
  15. A. M. Gobin, J. J. Moon, and J. L. West, “EphrinAl-targeted nanoshells for photothermal ablation of prostate cancer cells,” Int. J. Nanomed.3, 351–358 (2008).
  16. J. M. Stern, J. Stanfield, Y. Lotan, S. Park, J. T. Hsieh, and J. A. Cadeddu, “Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro,” J. Endourol.21, 939–943 (2007). [CrossRef] [PubMed]
  17. A. R. Lowery, A. M. Gobin, E. S. Day, N. J. Halas, and J. L. West, “Immunonanoshells for targeted photothermal ablation of tumor cells,” Int. J. Nanomed.1, 149–154 (2006). [CrossRef]
  18. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003). [CrossRef] [PubMed]
  19. J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett.1, 686–695 (2010). [CrossRef]
  20. X. Huang and M. A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res.1, 13–28 (2010). [CrossRef]
  21. O. Pena, U. Pal, L. Rodriguez-Fernandez, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B25, 1371–1379 (2008). [CrossRef]
  22. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006). [CrossRef] [PubMed]
  23. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B16, 1824–1832 (1999). [CrossRef]
  24. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B6, 787–796 (1989). [CrossRef]
  25. S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy,” Biomed. Opt. Express3, 590–604 (2012). [CrossRef] [PubMed]
  26. T. Grosges, D. Barchiesi, S. Kessentini, G. Grehan, and M. L. de la Chapelle, “Nanoshells for photothermal therapy: A Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2, 1584–1596 (2011). [CrossRef] [PubMed]
  27. J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, “Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents,” Nat. Mater.10, 324–332 (2011). [CrossRef] [PubMed]
  28. J. Park, A. Estrada, J. A. Schwartz, P. Diagaradjane, S. Krishnan, C. Coleman, J. D. Payne, A. K. Dunn, and J. W. Tunnell, “Two-photon-induced photoluminescence imaging of gold nanoshell’s tumor biodistribution,” Proc. SPIE7192, 71920T (2009). [CrossRef]
  29. B. Choi and A. J. Welch, “Analysis of thermal relaxation during laser irradiation of tissue,” Lasers Surg. Med.29, 351–359 (2001). [CrossRef] [PubMed]
  30. X. Zheng and F. Zhou, “Noncovalent functionalization of single-walled carbon nanotubes by indocyanine green: Potential nanocomplexes for photothermal therapy,” J. X-Ray Sci. Tech.19, 275–284 (2011).
  31. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Publications, Bellingham, Washington, 2007).
  32. C. C. Handapangoda, M. Premaratne, D. M. Paganin, and P. R. D. S. Hendahewa, “Technique for handling wave propagation specific effects in biological tissue: mapping of the photon transport equation to Maxwell’s equations,” Opt. Express16, 17792–17807 (2008). [CrossRef] [PubMed]
  33. M. Premaratne, E. Premaratne, and A. Lowery, “The photon transport equation for turbid biological media with spatially varying isotropic refractive index,” Opt. Express13, 389–399 (2005). [CrossRef] [PubMed]
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998). [CrossRef]
  35. C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobiosci.7, 206–214 (2008). [CrossRef]
  36. M. L. Marasinghe, M. Premaratne, D. M. Paganin, and M. A. Alonso, “Coherence vortices in Mie scattered nonparaxial partially coherent beams,” Opt. Express20, 2858–2875 (2012). [CrossRef] [PubMed]
  37. M. L. Marasinghe, M. Premaratne, and D. M. Paganin, “Coherence vortices in Mie scattering of statistically stationary partially coherent fields,” Opt. Express18, 6628–6641 (2010). [CrossRef] [PubMed]
  38. A. N. Rubinov and A. A. Afanas’ev, “Nonresonance mechanisms of biological effects of coherent and incoherent light,” Opt. Spectrosc.98, 943–948 (2005). [CrossRef]
  39. R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express20, 16532–16543 (2012). [CrossRef]
  40. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders, Philadelphia, 1976).
  41. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci.156, 678–700 (1985). [CrossRef]
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  43. S. N. Il’chenko, Y. O. Kostin, I. A. Kukushkin, M. A. Ladugin, P. I. Lapin, A. A. Lobintsov, A. A. Marmalyuk, and S. D. Yakubovich, “Broadband superluminescent diodes and semiconductor optical amplifiers for the spectral range 750–800 nm,” Quantum Electron.41, 677–680 (2011). [CrossRef]
  44. C. E. Dimas, C. L. Tan, H. S. Djie, and B. S. Ooi, “Coherence length characteristics from broadband semiconductor emitters: superluminescent diodes versus broadband laser diodes,” Proc. SPIE7230, 72300B (2009). [CrossRef]
  45. J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron.5, 1205–1215 (1999). [CrossRef]
  46. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, and M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron.24, 2454–2457 (1988). [CrossRef]
  47. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express17, 19486–19500 (2009). [CrossRef] [PubMed]
  48. X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles for plasmonic photothermal cancer therapy,” in “Handbook of Nanophysics,” K. D. Sattler, ed. (CRC Press, 2010), pp. 1–15.
  49. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55, 1205–1208 (1965). [CrossRef]
  50. G. Wu, A. Mikhailovsky, H. A. Khant, and J. A. Zasadzinski, “Synthesis, characterization, and optical response of gold nanoshells used to trigger release from liposomes,” Methods Enzymol.464, 279–307 (2009). [CrossRef] [PubMed]
  51. V. V. Tuchin, “Optical clearing of tissues and blood using the immersion method,” J. Phys. D: Appl. Phys.38, 2497–2518 (2005). [CrossRef]
  52. F. A. Duck, Physical Properties of Tissue: a Comprehensive Reference Book (Academic, London, 1990).
  53. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003). [CrossRef] [PubMed]
  54. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Complex-ω approach versus complex-k approach in description of gain-assisted surface plasmon-polariton propagation along linear chains of metallic nanospheres,” Phys. Rev. B83, 115451 (2011). [CrossRef]
  55. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: The role of optical gain and chain layout,” Opt. Express19, 19973–19986 (2011). [CrossRef] [PubMed]
  56. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B103, 4212–4217 (1999). [CrossRef]
  57. J. Li, G. Sun, and C. T. Chan, “Optical properties of photonic crystals composed of metal-coated spheres,” Phys. Rev. B73, 075117 (2006). [CrossRef]
  58. D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B108, 13957–13962 (2004). [CrossRef]
  59. H. Trabelsi, M. Gantri, T. Sghaier, and E. Sediki, “Computational study of a possible improvement of cancer detection by diffuse optical tomography,” Adv. Stud. Biol.4, 195–206 (2012).
  60. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B110, 19935–19944 (2006). [CrossRef] [PubMed]
  61. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited