OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 1 — Jan. 1, 2013
  • pp: 151–159

Gene transfection efficacy assessment of human cervical cancer cells using dual-mode fluorescence microendoscopy

Jaepyeong Cha, Jing Zhang, Saumya Gurbani, Gyeong Woo Cheon, Min Li, and Jin U. Kang  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 1, pp. 151-159 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel approach to quantitatively assess gene transfection efficacy using dual-modality microendoscopy that can simultaneously monitor both laser scanning reflectance and fluorescence imaging. The system uses a 500-μm-diameter coherent fiber bundle and permits 3.5-μm lateral resolution. Both reflectance and fluorescence images obtained from two silicon avalanche photodetectors are displaying at 1 Hz and processed automatically to calculate gene transfection efficiency (the ratio of fluorescent cells among the total cells). To validate the system performance we examined the expression of cyan fluorescent protein using human cervical cancer cells (HeLa) in four commercially available reagents. The result was compared with that using a high-resolution bench-top microscope.

© 2012 OSA

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2520) Medical optics and biotechnology : Fluorescence microscopy

ToC Category:
Endoscopes, Catheters and Micro-Optics

Original Manuscript: November 8, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 12, 2012
Published: December 18, 2012

Jaepyeong Cha, Jing Zhang, Saumya Gurbani, Gyeong Woo Cheon, Min Li, and Jin U. Kang, "Gene transfection efficacy assessment of human cervical cancer cells using dual-mode fluorescence microendoscopy," Biomed. Opt. Express 4, 151-159 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007). [CrossRef] [PubMed]
  2. National Cancer Institute, “Cervical cancer treatment (PDQ®),” http://www.cancer.gov/cancertopics/pdq/treatment/cervical/patient/ .
  3. G. M. Rubanyi, “The future of human gene therapy,” Mol. Aspects Med.22(3), 113–142 (2001). [CrossRef] [PubMed]
  4. D. Cross and J. K. Burmester, “Gene therapy for cancer treatment: past, present and future,” Clin. Med. Res.4(3), 218–227 (2006). [CrossRef] [PubMed]
  5. D. Stone, A. David, F. Bolognani, P. R. Lowenstein, and M. G. Castro, “Viral vectors for gene delivery and gene therapy within the endocrine system,” J. Endocrinol.164(2), 103–118 (2000). [CrossRef] [PubMed]
  6. D. A. Balazs and W. T. Godbey, “Liposomes for use in gene delivery,” J. Drug Deliv.2011, 326497 (2011). [CrossRef] [PubMed]
  7. T. Misteli and D. L. Spector, “Applications of the green fluorescent protein in cell biology and biotechnology,” Nat. Biotechnol.15(10), 961–964 (1997). [CrossRef] [PubMed]
  8. T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol.2(9), 744–753 (2004). [CrossRef] [PubMed]
  9. C. Liang, M. R. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express9(13), 821–830 (2001). [CrossRef] [PubMed]
  10. K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002). [CrossRef] [PubMed]
  11. P. M. Lane, S. Lam, and A. McWilliams, “J. C. IeRiche, M. W. Anderson, and C. E. MacAulay, “Confocal fluorescence microendoscopy of bronchial epithelium,” J. Biomed. Opt.14(2), 02408 (2009).
  12. H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012). [CrossRef] [PubMed]
  13. F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” J. Clin. Gastroenterol.46(5), 401–406 (2012). [CrossRef] [PubMed]
  14. E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012). [CrossRef] [PubMed]
  15. S. E. Ilyin, M. C. Flynn, and C. R. Plata-Salamán, “Fiber-optic monitoring coupled with confocal microscopy for imaging gene expression in vitro and in vivo,” J. Neurosci. Methods108(1), 91–96 (2001). [CrossRef] [PubMed]
  16. K. H. Al-Gubory and L.-M. Houdebine, “In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy,” Eur. J. Cell Biol.85(8), 837–845 (2006). [CrossRef] [PubMed]
  17. V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc.207(2), 108–117 (2002). [CrossRef] [PubMed]
  18. P. M. Lane, “Terminal reflections in fiber-optic image guides,” Appl. Opt.48(30), 5802–5810 (2009). [CrossRef] [PubMed]
  19. W. H. Dzik and P. Szuflad, “Method for counting white cells (WBCs) in WBC-reduced red cell concentrates,” Transfusion33(3), 272–273 (1993). [CrossRef] [PubMed]
  20. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett.29(21), 2521–2523 (2004). [CrossRef] [PubMed]
  21. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express16(26), 21598–21607 (2008). [CrossRef] [PubMed]
  22. Y. Huang, K. Zhang, C. Lin, and J. U. Kang, “Motion compensated fiber-optic confocal microscope based on a common-path optical coherence tomography distance sensor,” Opt. Eng.50(8), 083201 (2011). [CrossRef]
  23. S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011). [CrossRef] [PubMed]
  24. T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited