OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 1 — Jan. 1, 2013
  • pp: 77–88

Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy

Yi-Hua Liao, Szu-Yu Chen, Sin-Yo Chou, Pei-Hsun Wang, Ming-Rung Tsai, and Chi-Kuang Sun  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 1, pp. 77-88 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Skin aging is an important issue in geriatric and cosmetic dermatology. To quantitatively analyze changes in keratinocytes related to intrinsic aging, we exploited a 1230 nm-based in vivo harmonic generation microscopy, combining second- and third-harmonic generation modalities. 52 individuals (21 men and 31 women, age range 19–79) were examined on the sun-protected volar forearm. Through quantitative analysis by the standard algorithm provided, we found that the cellular and nuclear size of basal keratinocytes, but not that of granular cells, was significantly increased with advancing age. The cellular and nuclear areas, which have an increase of 0.51 μm2 and 0.15 μm2 per year, respectively, can serve as scoring indices for intrinsic skin aging.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.1530) Medical optics and biotechnology : Cell analysis
(170.1610) Medical optics and biotechnology : Clinical applications
(170.1870) Medical optics and biotechnology : Dermatology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4160) Nonlinear optics : Multiharmonic generation

ToC Category:
Dermatological Applications

Original Manuscript: September 10, 2012
Revised Manuscript: October 29, 2012
Manuscript Accepted: October 30, 2012
Published: December 13, 2012

Yi-Hua Liao, Szu-Yu Chen, Sin-Yo Chou, Pei-Hsun Wang, Ming-Rung Tsai, and Chi-Kuang Sun, "Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy," Biomed. Opt. Express 4, 77-88 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Farage, K. W. Miller, P. Elsner, and H. I. Maibach, “Intrinsic and extrinsic factors in skin ageing: a review,” Int. J. Cosmet. Sci.30(2), 87–95 (2008). [CrossRef] [PubMed]
  2. K.-I. Nakamura, N. Izumiyama-Shimomura, M. Sawabe, T. Arai, Y. Aoyagi, M. Fujiwara, E. Tsuchiya, Y. Kobayashi, M. Kato, M. Oshimura, K. Sasajima, K. Nakachi, and K. Takubo, “Comparative analysis of telomere lengths and erosion with age in human epidermis and lingual epithelium,” J. Invest. Dermatol.119(5), 1014–1019 (2002). [CrossRef] [PubMed]
  3. E. M. Buckingham and A. J. Klingelhutz, “The role of telomeres in the ageing of human skin,” Exp. Dermatol.20(4), 297–302 (2011). [CrossRef] [PubMed]
  4. M. Sugimoto, R. Yamashita, and M. Ueda, “Telomere length of the skin in association with chronological aging and photoaging,” J. Dermatol. Sci.43(1), 43–47 (2006). [CrossRef] [PubMed]
  5. S. I. S. Rattan, “Aging of skin cells in culture,” in Textbook of Aging Skin, M. A. Farage, K. W. Miller, and H. I. Maibach, eds. (Springer-Verlag, Heidelberg, 2010), pp. 487–492.
  6. N. A. Fenske and C. W. Lober, “Structural and functional changes of normal aging skin,” J. Am. Acad. Dermatol.15(4), 571–585 (1986). [CrossRef] [PubMed]
  7. M. El-Domyati, S. Attia, F. Saleh, D. Brown, D. E. Birk, F. Gasparro, H. Ahmad, and J. Uitto, “Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin,” Exp. Dermatol.11(5), 398–405 (2002). [CrossRef] [PubMed]
  8. B. A. Gilchrest, “Skin aging and photoaging: an overview,” J. Am. Acad. Dermatol.21(3), 610–613 (1989). [CrossRef] [PubMed]
  9. M. Gniadecka and G. B. Jemec, “Quantitative evaluation of chronological ageing and photoageing in vivo: studies on skin echogenicity and thickness,” Br. J. Dermatol.139(5), 815–821 (1998). [CrossRef] [PubMed]
  10. J. M. Waller and H. I. Maibach, “Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity,” Skin Res. Technol.11(4), 221–235 (2005). [CrossRef] [PubMed]
  11. S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008). [CrossRef] [PubMed]
  12. S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and T. A. Nuijs, “Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography,” J. Biomed. Opt.9(2), 274–281 (2004). [CrossRef] [PubMed]
  13. M. J. Koehler, K. König, P. Elsner, R. Bückle, and M. Kaatz, “In vivo assessment of human skin aging by multiphoton laser scanning tomography,” Opt. Lett.31(19), 2879–2881 (2006). [CrossRef] [PubMed]
  14. M. J. Koehler, S. Hahn, A. Preller, P. Elsner, M. Ziemer, A. Bauer, K. König, R. Bückle, J. W. Fluhr, and M. Kaatz, “Morphological skin ageing criteria by multiphoton laser scanning tomography: non-invasive in vivo scoring of the dermal fibre network,” Exp. Dermatol.17(6), 519–523 (2008). [CrossRef] [PubMed]
  15. C. Longo, A. Casari, F. Beretti, A. M. Cesinaro, and G. Pellacani, “Skin aging: in vivo microscopic assessment of epidermal and dermal changes by means of confocal microscopy,” J. Am. Acad. Dermatol. (2011). [CrossRef] [PubMed]
  16. S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010). [CrossRef]
  17. S. Y. Chen, H. Y. Wu, and C.-K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt.14(6), 060505 (2009). [CrossRef] [PubMed]
  18. T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning23(4), 249–254 (2001). [CrossRef] [PubMed]
  19. C. C. Wang, “Chromium-doped forsterite laser mode-locking and its applications,” Graduate Institute of Photonics and Optoelectronics, Master Thesis (National Taiwan University, 1999).
  20. M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt.10(5), 054006 (2005). [CrossRef] [PubMed]
  21. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A52(5), 4116–4125 (1995). [CrossRef] [PubMed]
  22. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc.191(3), 266–274 (1998). [CrossRef] [PubMed]
  23. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006). [CrossRef] [PubMed]
  24. M. R. Tsai, S. Y. Chen, D. B. Shieh, P. J. Lou, and C.-K. Sun, “In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy,” Biomed. Opt. Express2(8), 2317–2328 (2011). [CrossRef] [PubMed]
  25. C. S. Hsieh, S. U. Chen, Y. W. Lee, Y. S. Yang, and C.-K. Sun, “Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos,” Opt. Express16(15), 11574–11588 (2008). [PubMed]
  26. P. J. Matts, P. J. Dykes, and R. Marks, “The distribution of melanin in skin determined in vivo,” Br. J. Dermatol.156(4), 620–628 (2007). [CrossRef] [PubMed]
  27. A. R. Haake, I. Roublevskaia, and M. Cooklis, “Apoptosis: a role in skin aging?” J. Investig. Dermatol. Symp. Proc.3(1), 28–35 (1998). [PubMed]
  28. M. J. Koehler, S. Zimmermann, S. Springer, P. Elsner, K. König, and M. Kaatz, “Keratinocyte morphology of human skin evaluated by in vivo multiphoton laser tomography,” Skin Res. Technol.17(4), 479–486 (2011). [CrossRef] [PubMed]
  29. G. Jenkins, “Molecular mechanisms of skin ageing,” Mech. Ageing Dev.123(7), 801–810 (2002). [CrossRef] [PubMed]
  30. Y. Soroka, Z. Ma’or, Y. Leshem, L. Verochovsky, R. Neuman, F. M. Brégégère, and Y. Milner, “Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals,” Exp. Gerontol.43(10), 947–957 (2008). [CrossRef] [PubMed]
  31. Y. Barrandon and H. Green, “Cell size as a determinant of the clone-forming ability of human keratinocytes,” Proc. Natl. Acad. Sci. U.S.A.82(16), 5390–5394 (1985). [CrossRef] [PubMed]
  32. M. Yaar and B. Gilchrest, “Aging of skin,” in Fitzpatrick’s Dermatology in General Medicine, I. M. Freedberg, A. Z. Eisen, K. Wolff, K. F. Austen, L. A. Goldsmith, and S. I. Katz, eds. (McGraw-Hill, New York, 2003), pp 1386–1398.
  33. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited