OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 1786–1794

Hyper-numerical aperture (NA = 2.8) microscope using λ = 1.56 µm femtosecond source for multi-photon imaging

Youngsik Kim, Phat Lu, Tom D. Milster, and Khanh Kieu  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 10, pp. 1786-1794 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new microscope is discussed, where the scanning illumination has a numerical aperture of 2.8 with λ = 1.56 µm femtosecond fiber laser. Samples are placed or grown on a silicon substrate. Multi-photon emission is imaged in transmission on a cooled CCD. Two-photon and three-photon effects are observed from the silicon/water interface and gold nanoparticles. Images of cells, reference spheres and gold nanoparticles illustrate imaging properties of the microscope. Spectral characteristics of individual particles are achieved with a blazed transmission grating. Emission properties of differently sized gold nanoparticles are studied in detail, which indicate that their emission is a two-photon effect due continuum generation. Interestingly, spectral shape and emission power are similar for 20nm, 40nm and 60nm diameter gold nanoparticles for the cases studied.

© 2013 OSA

OCIS Codes
(180.4243) Microscopy : Near-field microscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: July 15, 2013
Manuscript Accepted: August 19, 2013
Published: August 29, 2013

Virtual Issues
Bio-Optics: Design and Applications (2013) Biomedical Optics Express

Youngsik Kim, Phat Lu, Tom D. Milster, and Khanh Kieu, "Hyper-numerical aperture (NA = 2.8) microscope using λ = 1.56 µm femtosecond source for multi-photon imaging," Biomed. Opt. Express 4, 1786-1794 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000). [CrossRef] [PubMed]
  2. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  3. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express3(9), 315–324 (1998). [CrossRef] [PubMed]
  4. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, and M. Müller, “Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source,” Appl. Opt.38(36), 7393–7397 (1999). [CrossRef] [PubMed]
  5. G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011). [CrossRef] [PubMed]
  6. X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med.39(9), 747–753 (2007). [CrossRef] [PubMed]
  7. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993). [CrossRef]
  8. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt.41(13), 2494–2507 (2002). [CrossRef] [PubMed]
  9. J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).
  10. J. Zhang, Y. S. Kim, S. H. Yang, and T. D. Milster, “Illumination artifacts in hyper-NA vector imaging,” J. Opt. Soc. Am. A27(10), 2272–2284 (2010). [CrossRef] [PubMed]
  11. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990). [CrossRef]
  12. S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt.57(9), 783–797 (2010). [CrossRef]
  13. T. D. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion lens systems,” Appl. Opt.38(23), 5046–5057 (1999). [CrossRef] [PubMed]
  14. A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci.123(21), 3621–3628 (2010). [CrossRef] [PubMed]
  15. K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-licked fiber laser system,” IEEE Photon. Technol. Lett.22(20), 1521–1523 (2010). [CrossRef]
  16. K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact Er3+-doped femtosecond fiber laser,” Submitted for Publication 2013.
  17. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc.191(3), 266–274 (1998). [CrossRef] [PubMed]
  18. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett.5(4), 799–802 (2005). [CrossRef] [PubMed]
  19. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited