OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 1795–1805

Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging

Shwetadwip Chowdhury and Joseph Izatt  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 1795-1805 (2013)
http://dx.doi.org/10.1364/BOE.4.001795


View Full Text Article

Enhanced HTML    Acrobat PDF (2499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Structured illumination microscopy (SIM) is an established microscopy technique typically used to image samples at resolutions beyond the diffraction limit. Until now, however, achieving sub-diffraction resolution has predominantly been limited to intensity-based imaging modalities. Here, we introduce an analogue to conventional SIM that allows sub-diffraction resolution, quantitative phase-contrast imaging of optically transparent objects. We demonstrate sub-diffraction resolution amplitude and quantitative-phase imaging of phantom targets and enhanced resolution quantitative-phase imaging of cells. We report a phase accuracy to within 5% and phase noise of 0.06 rad.

© 2013 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(100.6640) Image processing : Superresolution
(180.0180) Microscopy : Microscopy

ToC Category:
Microscopy

History
Original Manuscript: July 11, 2013
Revised Manuscript: August 22, 2013
Manuscript Accepted: August 22, 2013
Published: August 29, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Citation
Shwetadwip Chowdhury and Joseph Izatt, "Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging," Biomed. Opt. Express 4, 1795-1805 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-1795


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Pawley, Handbook of Biological Confocal Microscopy (Springer Science + Business Media, 1989).
  2. W. J. Smith, Modern Lens Design, 2nd Ed (McGraw-Hill Professional Engineering, 2005).
  3. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1959).
  4. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am.56(11), 1463–1471 (1966). [CrossRef]
  5. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit II,” J. Opt. Soc. Am.57(7), 932–941 (1967). [CrossRef]
  6. P. C. Sun and E. N. Leith, “Superresolution by spatial-temporal encoding methods,” Appl. Opt.31(23), 4857–4862 (1992). [CrossRef] [PubMed]
  7. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt.17(2), 026003 (2012). [CrossRef] [PubMed]
  8. S. Chowdhury, A. H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express3(8), 1841–1854 (2012). [CrossRef] [PubMed]
  9. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics7(2), 113–117 (2013). [CrossRef]
  10. K. Chu, Z. J. Smith, S. Wachsmann-Hogiu, and S. Lane, “Super-resolved spatial light interference microscopy,” J. Opt. Soc. Am. A29(3), 344–351 (2012). [CrossRef] [PubMed]
  11. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  12. M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opin. Chem. Biol.12(5), 505–514 (2008). [CrossRef] [PubMed]
  13. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  14. S. W. Hell and M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. (Berl.)60(5), 495–497 (1995). [CrossRef]
  15. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  16. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009). [CrossRef] [PubMed]
  17. A. A. Mudassar and A. Hussain, “Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Opt.49(17), 3434–3441 (2010). [CrossRef] [PubMed]
  18. J. Chen, Y. Xu, X. Lv, X. Lai, and S. Zeng, “Super-resolution differential interference contrast microscopy by structured illumination,” Opt. Express21(1), 112–121 (2013). [CrossRef] [PubMed]
  19. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012). [CrossRef] [PubMed]
  20. Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011). [CrossRef] [PubMed]
  21. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett.34(6), 767–769 (2009). [CrossRef] [PubMed]
  22. N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early Cell Death Detection with Digital Holographic Microscopy,” PLoS ONE7(1), e30912 (2012). [CrossRef] [PubMed]
  23. S. Shroff, J. Fienup, and D. Williams, “OTF compensation in structured illumination superresolution images,” Proc. SPIE7094, 709402, 709402-11 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited