OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 1856–1875

Evaluation of laser speckle contrast imaging as an intrinsic method to monitor blood brain barrier integrity

Suzie Dufour, Yaaseen Atchia, Raanan Gad, Dene Ringuette, Iliya Sigal, and Ofer Levi  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 10, pp. 1856-1875 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The integrity of the blood brain barrier (BBB) can contribute to the development of many brain disorders. We evaluate laser speckle contrast imaging (LSCI) as an intrinsic modality for monitoring BBB disruptions through simultaneous fluorescence and LSCI with vertical cavity surface emitting lasers (VCSELs). We demonstrated that drug-induced BBB opening was associated with a relative change of the arterial and venous blood velocities. Cross-sectional flow velocity ratio (veins/arteries) decreased significantly in rats treated with BBB-opening drugs, ≤0.81 of initial values.

© 2013 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Speckle Imaging and Diagnostics

Original Manuscript: March 25, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: July 23, 2013
Published: August 30, 2013

Suzie Dufour, Yaaseen Atchia, Raanan Gad, Dene Ringuette, Iliya Sigal, and Ofer Levi, "Evaluation of laser speckle contrast imaging as an intrinsic method to monitor blood brain barrier integrity," Biomed. Opt. Express 4, 1856-1875 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, and D. J. Begley, “Structure and function of the blood-brain barrier,” Neurobiol. Dis.37(1), 13–25 (2010).
  2. R. N. Kalaria, “The Blood-Brain Barrier and Cerebrovascular Pathology in Alzheimer’s Disease,” Ann. N. Y. Acad. Sci.893, 113–125 (1999).
  3. M. B. Shlosberg, D. Kaufer, and A. Friedman, “Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury,” Nat. Rev. Neurol.6, 10 (2010).
  4. O. Tomkins, I. Shelef, I. Kaizerman, A. Eliushin, Z. Afawi, A. Misk, M. Gidon, A. Cohen, D. Zumsteg, and A. Friedman, “Blood-brain barrier disruption in post-traumatic epilepsy,” J. Neurol. Neurosurg. Psychiatry79(7), 774–777 (2008).
  5. E. Seiffert, J. P. Dreier, S. Ivens, I. Bechmann, O. Tomkins, U. Heinemann, and A. Friedman, “Lasting Blood-Brain Barrier Disruption Induces Epileptic Focus in the Rat Somatosensory Cortex,” J. Neurosci.24(36), 7829–7836 (2004).
  6. W. H. Oldendorf, “Blood-Brain Barrier Permeability to Drugs,” Annu. Rev. Pharmacol.14(1), 239–248 (1974).
  7. W. M. Pardridge, “CNS Drug Design Based on Principles of Blood-Brain Barrier Transport,” J. Neurochem.70(5), 1781–1792 (1998).
  8. M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11719–11723 (2006).
  9. S. I. Rapoport, “Osmotic Opening of the Blood-Brain Barrier: Principles, Mechanism, and Therapeutic Applications,” Cell. Mol. Neurobiol.20(2), 217–230 (2000).
  10. N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, and K. Hynynen, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound Med. Biol.30(7), 979–989 (2004).
  11. Q. Jiang, J. R. Ewing, G. L. Ding, L. Zhang, Z. G. Zhang, L. Li, P. Whitton, M. Lu, J. Hu, Q. J. Li, R. A. Knight, and M. Chopp, “Quantitative evaluation of BBB permeability after embolic stroke in rat using MRI,” J. Cereb. Blood Flow Metab.25(5), 583–592 (2005).
  12. P. S. Tofts and A. G. Kermode, “Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts,” Magn. Reson. Med.17(2), 357–367 (1991).
  13. S. Taheri, E. Candelario-Jalil, E. Y. Estrada, and G. A. Rosenberg, “Spatiotemporal Correlations between Blood-Brain Barrier Permeability and Apparent Diffusion Coefficient in a Rat Model of Ischemic Stroke,” PLoS ONE4(8), e6597 (2009).
  14. M. Wintermark, J. Hom, J. Dankbaar, J. Bredno, and M. Olszewski, “Blood-brain barrier permeability: quantification with computed tomography and application in acute ischemic stroke,” Dear Friends53, 3 (2009).
  15. L. Ruiz-Valdepeñas, J. A. Martínez-Orgado, C. Benito, A. Millán, R. M. Tolón, and J. Romero, “Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study,” J. Neuroinflammation8(1), 5 (2011).
  16. D.-E. Kim, D. Schellingerhout, F. A. Jaffer, R. Weissleder, and C. H. Tung, “Near-infrared fluorescent imaging of cerebral thrombi and blood-brain barrier disruption in a mouse model of cerebral venous sinus thrombosis,” J. Cereb. Blood Flow Metab.25(2), 226–233 (2005).
  17. E. E. Cho, J. Drazic, M. Ganguly, B. Stefanovic, and K. Hynynen, “Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening,” J. Cereb. Blood Flow Metab.31(9), 1852–1862 (2011).
  18. O. Prager, Y. Chassidim, C. Klein, H. Levi, I. Shelef, and A. Friedman, “Dynamic in vivo imaging of cerebral blood flow and blood-brain barrier permeability,” Neuroimage49(1), 337–344 (2010).
  19. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
  20. A. Ponticorvo and A. K. Dunn, “How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow,” J. Vis. Exp. (45): (2010).
  21. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
  22. P. Miao, H. Lu, Q. Liu, Y. Li, and S. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011).
  23. Y. Atchia, H. Levy, S. Dufour, and O. Levi, “Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source,” Appl. Opt.52(7), C64–C71 (2013).
  24. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
  25. I. Sigal, Y. Atchia, R. Gad, A. M. Caravaca, D. Conkey, R. Piestun, and O. Levi, “Laser Speckle Contrast Imaging with Extended Depth of Field for Brain Imaging Applications,” in CLEO: Science and Innovations, Imaging & Microscopy I (Optical Society of America, 2013), paper CTu2M.
  26. A. K. Dunn, “Laser Speckle Contrast Imaging of Cerebral Blood Flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
  27. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas.22(4), R35–R66 (2001).
  28. L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Laser Speckle Imaging of Cerebral Blood Flow,” in Optical Methods and Instrumentation in Brain Imaging and Therapy (Springer New York, 2013), pp. 117–136.
  29. M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
  30. H. Levy, D. Ringuette, and O. Levi, “Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow,” Biomed. Opt. Express3(4), 777–791 (2012).
  31. E. A. Munro, H. Levy, D. Ringuette, T. D. O’Sullivan, and O. Levi, “Multi-modality optical neural imaging using coherence control of VCSELs,” Opt. Express19(11), 10747–10761 (2011).
  32. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express17(18), 15670–15678 (2009).
  33. J. Greenwood, J. Adu, A. J. Davey, N. J. Abbott, and M. W. Bradbury, “The effect of bile salts on the permeability and ultrastructure of the perfused, energy-depleted, rat blood-brain barrier,” J. Cereb. Blood Flow Metab.11(4), 644–654 (1991).
  34. H. Ichikawa and K. Itoh, “Blood-arachnoid barrier disruption in experimental rat meningitis detected using gadolinium-enhancement ratio imaging,” Brain Res.1390, 142–149 (2011).
  35. A. Saria and J. M. Lundberg, “Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues,” J. Neurosci. Methods8(1), 41–49 (1983).
  36. A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012).
  37. H. P. Rani, T. W. Sheu, T. M. Chang, and P. C. Liang, “Numerical investigation of non-Newtonian microcirculatory blood flow in hepatic lobule,” J. Biomech.39(3), 551–563 (2006).
  38. L. Grinberg, V. Morozov, D. Fedosov, J. A. Insley, M. E. Papka, K. Kumaran, and G. E. Karniadakis, “A new computational paradigm in multiscale simulations: Application to brain blood flow,” in High Performance Computing, Networking, Storage and Analysis (SC), 2011International Conference for(IEEE, 2011), pp. 1–12.
  39. S. Lorthois, F. Cassot, and F. Lauwers, “Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters,” Neuroimage54(4), 2840–2853 (2011).
  40. S. Lorthois, F. Cassot, and F. Lauwers, “Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: Part I: methodology and baseline flow,” Neuroimage54(2), 1031–1042 (2011).
  41. R. Byron Bird and P. J. Carreau, “A nonlinear viscoelastic model for polymer solutions and melts—I,” Chem. Eng. Sci.23(5), 427–434 (1968).
  42. Y. I. Cho and K. R. Kensey, “Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows,” Biorheology28(3-4), 241–262 (1991).
  43. A. Sequeira and J. Janela, “An overview of some mathematical models of blood rheology,” in A Portrait of State-of-the-Art Research at the Technical University of Lisbon(Springer, 2007), pp. 65–87.
  44. B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, “Non-Newtonian blood flow in human right coronary arteries: steady state simulations,” J. Biomech.37(5), 709–720 (2004).
  45. K. P. Ivanov, M. K. Kalinina, and Y. I. Levkovich, “Blood flow velocity in capillaries of brain and muscles and its physiological significance,” Microvasc. Res.22(2), 143–155 (1981).
  46. S. M. Stieger, C. F. Caskey, R. H. Adamson, S. Qin, F.-R. E. Curry, E. R. Wisner, and K. W. Ferrara, “Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model,” Radiology243(1), 112–121 (2007).
  47. S. Lorthois and F. Lauwers, “Control of brain blood flow by capillaries: a simulation study in an anatomically accurate large human vascular network,” Comput. Methods Biomech. Biomed. Engin. 15(sup1), 66–68 (2012).
  48. M. E. van Raaij, L. Lindvere, A. Dorr, J. He, B. Sahota, F. S. Foster, and B. Stefanovic, “Quantification of blood flow and volume in arterioles and venules of the rat cerebral cortex using functional micro-ultrasound,” Neuroimage63(3), 1030–1037 (2012).
  49. N. Nishimura, N. L. Rosidi, C. Iadecola, and C. B. Schaffer, “Limitations of collateral flow after occlusion of a single cortical penetrating arteriole,” J. Cereb. Blood Flow Metab.30(12), 1914–1927 (2010).
  50. J. Nguyen, N. Nishimura, R. N. Fetcho, C. Iadecola, and C. B. Schaffer, “Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries,” J. Cereb. Blood Flow Metab.31(11), 2243–2254 (2011).
  51. M. B. Lawrence, L. V. McIntire, and S. G. Eskin, “Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion,” Blood70(5), 1284–1290 (1987).
  52. C. Skilbeck, S. M. Westwood, P. G. Walker, T. David, and G. B. Nash, “Population of the vessel wall by leukocytes binding to P-selectin in a model of disturbed arterial flow,” Arterioscler. Thromb. Vasc. Biol.21(8), 1294–1300 (2001).
  53. B. Arvin, L. F. Neville, F. C. Barone, and G. Z. Feuerstein, “The role of inflammation and cytokines in brain injury,” Neurosci. Biobehav. Rev.20(3), 445–452 (1996).
  54. K. Miyamoto, Y. Ogura, M. Hamada, H. Nishiwaki, N. Hiroshiba, and Y. Honda, “In vivo quantification of leukocyte behavior in the retina during endotoxin-induced uveitis,” Invest. Ophthalmol. Vis. Sci.37(13), 2708–2715 (1996).
  55. M. Bohatschek, A. Werner, and G. Raivich, “Systemic LPS injection leads to granulocyte influx into normal and injured brain: effects of ICAM-1 deficiency,” Exp. Neurol.172(1), 137–152 (2001).
  56. N. Parashurama, T. D. O’Sullivan, A. De La Zerda, P. El Kalassi, S. Cho, H. Liu, R. Teed, H. Levy, J. Rosenberg, Z. Cheng, O. Levi, J. S. Harris, and S. S. Gambhir, “Continuous sensing of tumor-targeted molecular probes with a vertical cavity surface emitting laser-based biosensor,” J. Biomed. Opt.17(11), 117004 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited