OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 1890–1908

Multi-MHz retinal OCT

Thomas Klein, Wolfgang Wieser, Lukas Reznicek, Aljoscha Neubauer, Anselm Kampik, and Robert Huber  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 1890-1908 (2013)
http://dx.doi.org/10.1364/BOE.4.001890


View Full Text Article

Enhanced HTML    Acrobat PDF (2478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the benefits and problems of in vivo optical coherence tomography (OCT) imaging of the human retina at A-scan rates in excess of 1 MHz, using a 1050 nm Fourier-domain mode-locked (FDML) laser. Different scanning strategies enabled by MHz OCT line rates are investigated, and a simple multi-volume data processing approach is presented. In-vivo OCT of the human ocular fundus is performed at different axial scan rates of up to 6.7 MHz. High quality non-mydriatic retinal imaging over an ultra-wide field is achieved by a combination of several key improvements compared to previous setups. For the FDML laser, long coherence lengths and 72 nm wavelength tuning range are achieved using a chirped fiber Bragg grating in a laser cavity at 419.1 kHz fundamental tuning rate. Very large data sets can be acquired with sustained data transfer from the data acquisition card to host computer memory, enabling high-quality averaging of many frames and of multiple aligned data sets. Three imaging modes are investigated: Alignment and averaging of 24 data sets at 1.68 MHz axial line rate, ultra-dense transverse sampling at 3.35 MHz line rate, and dual-beam imaging with two laser spots on the retina at an effective line rate of 6.7 MHz.

© 2013 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(140.3510) Lasers and laser optics : Lasers, fiber
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: May 29, 2013
Revised Manuscript: July 17, 2013
Manuscript Accepted: July 18, 2013
Published: August 30, 2013

Citation
Thomas Klein, Wolfgang Wieser, Lukas Reznicek, Aljoscha Neubauer, Anselm Kampik, and Robert Huber, "Multi-MHz retinal OCT," Biomed. Opt. Express 4, 1890-1908 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-1890


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995). [CrossRef] [PubMed]
  3. M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol.138(3), 412–419 (2004). [CrossRef] [PubMed]
  4. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  5. B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, “Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography,” Opt. Express17(5), 4134–4150 (2009). [CrossRef] [PubMed]
  6. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt.4(1), 95–105 (1999). [CrossRef] [PubMed]
  7. M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New Directions in Ophthalmic Optical Coherence Tomography,” Optom. Vis. Sci.89(5), 524–542 (2012). [CrossRef] [PubMed]
  8. L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Toth, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express3(5), 927–942 (2012). [CrossRef] [PubMed]
  9. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography,” Opt. Express17(5), 4084–4094 (2009). [CrossRef] [PubMed]
  10. Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express19(27), 26239–26248 (2011). [CrossRef] [PubMed]
  11. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011). [CrossRef] [PubMed]
  12. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004). [CrossRef] [PubMed]
  13. Y. K. Tao, S. Farsiu, and J. A. Izatt, “Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Biomed. Opt. Express1(2), 431–440 (2010). [CrossRef] [PubMed]
  14. G. Gregori and P. J. Rosenfeld, “Using OCT Fundus Images to Evaluate the Performance of the Spectralis OCT Eye Tracking System (Poster 1032/A434),” in ARVO Annual Meeting 2011, (Fort Lauderdale, Florida, 2011).
  15. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express3(11), 2950–2963 (2012). [CrossRef] [PubMed]
  16. A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res.27(4), 464–499 (2008). [CrossRef] [PubMed]
  17. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005). [CrossRef] [PubMed]
  18. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Považay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-Dimensional Ultrahigh-Resolution Optical Coherence Tomography of Macular Diseases,” Invest. Ophthalmol. Vis. Sci.46(9), 3393–3402 (2005). [CrossRef] [PubMed]
  19. A. G. Podoleanu, G. M. Dobre, R. G. Cucu, R. Rosen, P. Garcia, J. Nieto, D. Will, R. Gentile, T. Muldoon, J. Walsh, L. A. Yannuzzi, Y. Fisher, D. Orlock, R. Weitz, J. A. Rogers, S. Dunne, and A. Boxer, “Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy,” J. Biomed. Opt.9(1), 86–93 (2004). [CrossRef] [PubMed]
  20. I. Gorczynska, V. J. Srinivasan, L. N. Vuong, R. W. S. Chen, J. J. Liu, E. Reichel, M. Wojtkowski, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration,” Br. J. Ophthalmol.93(5), 603–609 (2009). [CrossRef] [PubMed]
  21. T. Agawa, M. Miura, Y. Ikuno, S. Makita, T. Fabritius, T. Iwasaki, H. Goto, K. Nishida, and Y. Yasuno, “Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography,” Graefes Arch. Clin. Exp. Ophthalmol.249(10), 1485–1492 (2011). [CrossRef] [PubMed]
  22. B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-Field Optical Coherence Tomography of the Choroid In Vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2008). [CrossRef] [PubMed]
  23. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011). [CrossRef] [PubMed]
  24. A. A. Ellabban, A. Tsujikawa, A. Matsumoto, K. Yamashiro, A. Oishi, S. Ooto, I. Nakata, Y. Akagi-Kurashige, M. Miyake, H. S. Elnahas, T. M. Radwan, K. A. Zaky, and N. Yoshimura, “Three-Dimensional Tomographic Features of Dome-Shaped Macula by Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol.155(2), 320–328, e2 (2013). [CrossRef] [PubMed]
  25. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006). [CrossRef] [PubMed]
  26. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “In vivo functional retinal optical coherence tomography,” J. Biomed. Opt.15(4), 041513 (2010). [CrossRef] [PubMed]
  27. L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011). [CrossRef] [PubMed]
  28. T. Torzicky, S. Marschall, M. Pircher, B. Baumann, M. Bonesi, S. Zotter, E. Götzinger, W. Trasischker, T. Klein, W. Wieser, B. Biedermann, R. Huber, P. Andersen, and C. K. Hitzenberger, “Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser,” J. Biomed. Opt.18(2), 026008 (2013). [CrossRef] [PubMed]
  29. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  30. C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt.17(7), 070505 (2012). [CrossRef] [PubMed]
  31. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  32. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011). [CrossRef] [PubMed]
  33. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett.33(12), 1318–1320 (2008). [CrossRef] [PubMed]
  34. D. H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express3(12), 3067–3086 (2012). [CrossRef] [PubMed]
  35. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  36. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005). [CrossRef] [PubMed]
  37. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  38. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  39. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” in Optical Sensors and Biophotonics III, Proc. SPIE 8311 (SPIE, 2011), 831116–831116.
  40. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” in (SPIE, 2012), 82130M.
  41. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  42. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express14(24), 11575–11584 (2006). [CrossRef] [PubMed]
  43. C. M. Eigenwillig, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express17(21), 18794–18807 (2009). [CrossRef] [PubMed]
  44. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013). [CrossRef] [PubMed]
  45. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012). [CrossRef] [PubMed]
  46. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express17(12), 9947–9961 (2009). [CrossRef] [PubMed]
  47. S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express19(9), 8802–8807 (2011). [CrossRef] [PubMed]
  48. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19(21), 20930–20939 (2011). [CrossRef] [PubMed]
  49. S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K. H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18(15), 15820–15831 (2010). [CrossRef] [PubMed]
  50. K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, and B. Jalali, “High-throughput optical coherence tomography at 800 nm,” Opt. Express20(18), 19612–19617 (2012). [CrossRef] [PubMed]
  51. C. M. Eigenwillig, T. Klein, W. Wieser, B. R. Biedermann, and R. Huber, “Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm,” J Biophotonics4(7-8), 552–558 (2011). [CrossRef] [PubMed]
  52. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  53. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett.24(21), 1484–1486 (1999). [CrossRef] [PubMed]
  54. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12(4), 041211 (2007). [CrossRef] [PubMed]
  55. M. Szkulmowski and M. Wojtkowski, “Averaging techniques for OCT imaging,” Opt. Express21(8), 9757–9773 (2013). [CrossRef] [PubMed]
  56. N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt.17(10), 106001 (2012). [CrossRef] [PubMed]
  57. T. Klein, R. André, W. Wieser, T. Pfeiffer, and R. Huber, “Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT,” Biomed. Opt. Express4(4), 619–634 (2013). [CrossRef] [PubMed]
  58. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007). [CrossRef] [PubMed]
  59. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-Speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008). [CrossRef] [PubMed]
  60. W. Wieser, G. Palte, C. M. Eigenwillig, B. R. Biedermann, T. Pfeiffer, and R. Huber, “Chromatic polarization effects of swept waveforms in FDML lasers and fiber spools,” Opt. Express20(9), 9819–9832 (2012). [CrossRef] [PubMed]
  61. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express3(10), 2647–2657 (2012). [CrossRef] [PubMed]
  62. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  63. T. Klein, W. Wieser, R. Andre, T. Pfeiffer, C. M. Eigenwillig, and R. Huber, “Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second,” in (SPIE, 2012), 82131E–82136.
  64. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE64260, 64260 (2007).
  65. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004). [CrossRef] [PubMed]
  66. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express15(25), 16390–16399 (2007). [CrossRef] [PubMed]
  67. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011). [CrossRef] [PubMed]
  68. S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and D. H. Hubel, “Microsaccades: a neurophysiological analysis,” Trends Neurosci.32(9), 463–475 (2009). [CrossRef] [PubMed]
  69. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012). [CrossRef] [PubMed]
  70. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express4(6), 803–821 (2013). [CrossRef] [PubMed]
  71. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting Motion Artifacts in Retinal Spectral Domain Optical Coherence Tomography via Image Registration,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009, G.-Z. Yang, D. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds. (Springer Berlin Heidelberg, 2009), pp. 100–107.
  72. M. Niemeijer, M. K. Garvin, K. Lee, B. van Ginneken, M. D. Abràmoff, and M. Sonka, “Registration of 3D spectral OCT volumes using 3D SIFT feature point matching ” in Proc. of SPIE, (2009), p. 72591I.
  73. S. Lee, M. Young, M. V. Sarunic, and M. F. Beg, “End-to-end pipeline for spectral domain optical coherence tomography and morphometric analysis of human optic nerve head,” J. Med. Biol. Eng.31, 9 (2010).
  74. B. Antony, M. D. Abràmoff, L. Tang, W. D. Ramdas, J. R. Vingerling, N. M. Jansonius, K. Lee, Y. H. Kwon, M. Sonka, and M. K. Garvin, “Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images,” Biomed. Opt. Express2(8), 2403–2416 (2011). [CrossRef] [PubMed]
  75. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998). [CrossRef] [PubMed]
  76. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods9(7), 676–682 (2012). [CrossRef] [PubMed]
  77. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express20(2), 1337–1359 (2012). [CrossRef] [PubMed]
  78. A. S. Neubauer, M. Kernt, C. Haritoglou, S. G. Priglinger, A. Kampik, and M. W. Ulbig, “Nonmydriatic screening for diabetic retinopathy by ultra-widefield scanning laser ophthalmoscopy (Optomap),” Graefes Arch. Clin. Exp. Ophthalmol.246(2), 229–235 (2008). [CrossRef] [PubMed]
  79. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett.35(20), 3315–3317 (2010). [CrossRef] [PubMed]
  80. J. U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W. P. A. Lee, G. Brandacher, and P. L. Gehlbach, “Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt.17(8), 081403 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (47421 KB)     
» Media 2: MOV (57376 KB)     
» Media 3: MOV (5873 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited