OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 1946–1963

Perturbation Monte Carlo methods for tissue structure alterations

Jennifer Nguyen, Carole K. Hayakawa, Judith R. Mourant, and Jerome Spanier  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 10, pp. 1946-1963 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes an extension of the perturbation Monte Carlo method to model light transport when the phase function is arbitrarily perturbed. Current perturbation Monte Carlo methods allow perturbation of both the scattering and absorption coefficients, however, the phase function can not be varied. The more complex method we develop and test here is not limited in this way. We derive a rigorous perturbation Monte Carlo extension that can be applied to a large family of important biomedical light transport problems and demonstrate its greater computational efficiency compared with using conventional Monte Carlo simulations to produce forward transport problem solutions. The gains of the perturbation method occur because only a single baseline Monte Carlo simulation is needed to obtain forward solutions to other closely related problems whose input is described by perturbing one or more parameters from the input of the baseline problem. The new perturbation Monte Carlo methods are tested using tissue light scattering parameters relevant to epithelia where many tumors originate. The tissue model has parameters for the number density and average size of three classes of scatterers; whole nuclei, organelles such as lysosomes and mitochondria, and small particles such as ribosomes or large protein complexes. When these parameters or the wavelength is varied the scattering coefficient and the phase function vary. Perturbation calculations give accurate results over variations of ∼15–25% of the scattering parameters.

© 2013 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Optics of Tissue and Turbid Media

Original Manuscript: June 19, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 8, 2013
Published: September 4, 2013

Jennifer Nguyen, Carole K. Hayakawa, Judith R. Mourant, and Jerome Spanier, "Perturbation Monte Carlo methods for tissue structure alterations," Biomed. Opt. Express 4, 1946-1963 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: Evaluation in engineered tissue Phantoms,” Appl. Opt.43, 1308–1319 (2004). [CrossRef] [PubMed]
  2. A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt.10, 044017 (2005). [CrossRef]
  3. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8, 121–147 (2003). [CrossRef] [PubMed]
  4. A. Amelink and H. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt.43, 3048–3054 (2004). [CrossRef] [PubMed]
  5. R. Reif, O. A‘Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt.46, 7317–7328 (2007). [CrossRef] [PubMed]
  6. M. Canpolat and J. R. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol.45, 1127–1140 (2000). [CrossRef] [PubMed]
  7. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source detector separations,” Opt. Lett.21, 546–548 (1996). [CrossRef] [PubMed]
  8. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt.31, 6628–6637 (1999). [CrossRef]
  9. C. Lau, O. Šcepanović, J. Mirkovic, S. McGee, C.-C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14, 024031 (2009). [CrossRef] [PubMed]
  10. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijistra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt.32, 426–434 (1993). [CrossRef] [PubMed]
  11. C Zhu and Q Liu, “Hybrid method for fast Monte Carlo simulation of diffuse reflectance from a multilayered tissue model with tumor-like heterogeneities.” J. Biomed. Opt.17010501 (2012). [CrossRef] [PubMed]
  12. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A24, 1011–1025 (2007). [CrossRef]
  13. Q. Wang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Condensed Monte Carlo modeling of reflectance from biological tissue with a single illuminationdetection fiber,” IEEE J. Sel. Top. Quantum Electron.16, 627–634 (2010). [CrossRef]
  14. C. Hayakawa, J. Spanier, F. Bevilacqua, A. Dunn, J. You, B. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett.26, 1335–1337 (2001). [CrossRef]
  15. I. Seo, J. You, C. Hayakawa, and V. Venugopalan, “Perturbation and differential Monte Carlo Methods for measurement of optical properties in a layered epithelial tissue model,” J. Biomed. Opt.12, 014030 (2007). [CrossRef] [PubMed]
  16. P. Yalavarthy, K. Karlekar, H. Patel, R. Vasu, M. Pramanik, P. Mathias, B. Jain, and P. Gupta, “Experimental Investigation of Perturbation Monte-Carlo Based Derivative Estimation for Imaging Low-Scattering Tissue,” Opt. Express13, 985–997 (2005). [CrossRef] [PubMed]
  17. J. Heiskala, M. Pollari, M. Metsäranta, and P. E. Grant, “Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain,” Opt. Express17, 14977–14992 (2009). [CrossRef] [PubMed]
  18. J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express17, 19566–19579 (2009). [CrossRef] [PubMed]
  19. J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomographycomputational efficiency,” Med. Phys.38, 5788–5798 (2011). [CrossRef] [PubMed]
  20. J. Schmitt and G. Kumar, “Optimal scattering properties of soft tissue: a discrete particle model,” Appl. Opt.37, 2788–2797 (1998). [CrossRef]
  21. M. Bartek, X. Wang, W. Wells, K. D. Paulsen, and P. W. Pogue, “Estimation of subcellular particle size histograms with electron microscopy for prediction of optical scattering in breast tissue,” J. Biomed. Opt.6, 064007 (2006). [CrossRef]
  22. J. D. Wilson and T. H. Foster, “Mie theory interpretations of light scattering from intact cells,” Opt. Lett.18, 2442–2444 (2005). [CrossRef]
  23. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures” J. Biomed. Opt.7, 378–387 (2002). [CrossRef] [PubMed]
  24. J. Ramachandran, T. Powers, S. Carpenter, A. Garcia-Lopez, J. P. Freyer, and J. R. Mourant, “Light Scattering and microarchitectural differences between tumorigenic and non-tumorigenic cell models of tissue,” Opt. Express15, 4039–4053 (2007). [CrossRef] [PubMed]
  25. J. Qu, C. MacAulay, S. Lam, and B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt.33, 7397–7405 (1994). [CrossRef] [PubMed]
  26. Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt.7587–594 (2002). [CrossRef] [PubMed]
  27. A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J.14, 439–453 (1974). [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  29. B. Gélébart, E. Tinet, J. M. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt.5, 377–388 (1996). [CrossRef]
  30. G. Goertzel and M. K. Kalos, “Monte Carlo methods in transport problems,” Appendix 2 in Progress in Nuclear Energy, Vol 2, Series 1, D. J. Hughes, J. E. Sanders, and J. Horowitz, eds. (Pergamon Press, 1958).
  31. J. Spanier and E. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, 1969).
  32. J. R. Mourant, T. M. Johnson, and J. P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt.40, 5114–5123 (2001). [CrossRef]
  33. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt, 47, 6046–6057 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited