OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 1978–1990

Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast

Conor Leahy, Harsha Radhakrishnan, and Vivek J. Srinivasan  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 1978-1990 (2013)
http://dx.doi.org/10.1364/BOE.4.001978


View Full Text Article

Enhanced HTML    Acrobat PDF (8876 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present volumetric imaging and computational techniques to quantify neuronal and myelin architecture with intrinsic scattering contrast. Using spectral / Fourier domain Optical Coherence Microscopy (OCM) and software focus-tracking we validate imaging of neuronal cytoarchitecture and demonstrate quantification in the rodent cortex in vivo. Additionally, by ex vivo imaging in conjunction with optical clearing techniques, we demonstrate that intrinsic scattering contrast is preserved in the brain, even after sacrifice and fixation. We volumetrically image cytoarchitecture and myeloarchitecture ex vivo across the entire depth of the rodent cortex. Cellular-level imaging up to the working distance of our objective (~3 mm) is demonstrated ex vivo. Architectonic features show the expected laminar characteristics; moreover, changes in contrast after the application of acetic acid suggest that entire neuronal cell bodies are responsible for the “negative contrast” present in the images. Clearing and imaging techniques that preserve tissue architectural integrity have the potential to enable non-invasive studies of the brain during development, disease, and remodeling, even in samples where exogenous labeling is impractical.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.0180) Medical optics and biotechnology : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(290.1350) Scattering : Backscattering

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 21, 2013
Manuscript Accepted: August 22, 2013
Published: September 5, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Citation
Conor Leahy, Harsha Radhakrishnan, and Vivek J. Srinivasan, "Volumetric imaging and quantification of cytoarchitecture and myeloarchitecture with intrinsic scattering contrast," Biomed. Opt. Express 4, 1978-1990 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-1978


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, W. R. Zipfel, and W. W. Webb, “Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis,” Science305(5680), 99–103 (2004). [CrossRef] [PubMed]
  2. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7081–7086 (2003). [CrossRef] [PubMed]
  3. M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, “In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy,” Biophys. J.100(5), 1362–1371 (2011). [CrossRef] [PubMed]
  4. Y. Fu, T. B. Huff, H. W. Wang, H. Wang, and J. X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008). [CrossRef] [PubMed]
  5. S. Witte, A. Negrean, J. C. Lodder, C. P. de Kock, G. Testa Silva, H. D. Mansvelder, and M. Louise Groot, “Label-free live brain imaging and targeted patching with third-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A.108(15), 5970–5975 (2011). [CrossRef] [PubMed]
  6. J. Ben Arous, J. Binding, J. F. Léger, M. Casado, P. Topilko, S. Gigan, A. C. Boccara, and L. Bourdieu, “Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy,” J. Biomed. Opt.16(11), 116012 (2011). [CrossRef] [PubMed]
  7. V. J. Srinivasan, H. Radhakrishnan, J. Y. Jiang, S. Barry, and A. E. Cable, “Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast,” Opt. Express20(3), 2220–2239 (2012). [CrossRef] [PubMed]
  8. O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” NeuroImage. Clinical2, 549–557 (2013).
  9. M. Snuderl, D. Wirth, S. A. Sheth, S. K. Bourne, C. S. Kwon, M. Ancukiewicz, W. T. Curry, M. P. Frosch, and A. N. Yaroslavsky, “Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors,” Brain Pathol.23(1), 73–81 (2013). [CrossRef] [PubMed]
  10. H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage58(4), 984–992 (2011). [CrossRef] [PubMed]
  11. H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki, “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain,” Nat. Neurosci.14(11), 1481–1488 (2011). [CrossRef] [PubMed]
  12. Y. He and R. K. Wang, “Dynamic optical clearing effect of tissue impregnated with hyperosmotic agents and studied with optical coherence tomography,” J. Biomed. Opt.9(1), 200–206 (2004). [CrossRef] [PubMed]
  13. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]
  14. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19(8), 590–592 (1994). [CrossRef] [PubMed]
  15. P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of Neuronal and Microvascular Densities in Murine Cortex Revealed by Direct Counting and Colocalization of Nuclei and Vessels,” J. Neurosci.29(46), 14553–14570 (2009). [CrossRef] [PubMed]
  16. R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol.182(5), 1135–1139 (2000). [CrossRef] [PubMed]
  17. T. Collier, P. Shen, B. de Pradier, K. B. Sung, R. Richards-Kortum, M. Follen, and A. Malpica, “Near real time confocal microscopy of amelanotic tissue: dynamics of aceto-whitening enable nuclear segmentation,” Opt. Express6(2), 40–48 (2000). [CrossRef] [PubMed]
  18. A. F. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. Blood Flow Metab.31(3), 795–806 (2011). [CrossRef] [PubMed]
  19. T. S. Skoglund, R. Pascher, and C. H. Berthold, “Heterogeneity in the columnar number of neurons in different neocortical areas in the rat,” Neurosci. Lett.208(2), 97–100 (1996). [CrossRef] [PubMed]
  20. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express12(19), 4353–4365 (2004). [CrossRef] [PubMed]
  21. K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature497(7449), 332–337 (2013). [CrossRef] [PubMed]
  22. K. Chung and K. Deisseroth, “CLARITY for mapping the nervous system,” Nat. Methods10(6), 508–513 (2013). [CrossRef] [PubMed]
  23. M. T. Ke, S. Fujimoto, and T. Imai, “SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction,” Nat. Neurosci.16(8), 1154–1161 (2013). [CrossRef] [PubMed]
  24. M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE6(4), e18963 (2011). [CrossRef] [PubMed]
  25. A. L. Pistorio, S. H. Hendry, and X. Wang, “A modified technique for high-resolution staining of myelin,” J. Neurosci. Methods153(1), 135–146 (2006). [CrossRef] [PubMed]
  26. W. Denk and H. Horstmann, “Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure,” PLoS Biol.2(11), e329 (2004). [CrossRef] [PubMed]
  27. W. Denk, K. L. Briggman, and M. Helmstaedter, “Structural neurobiology: missing link to a mechanistic understanding of neural computation,” Nat. Rev. Neurosci.13(5), 351–358 (2012). [PubMed]
  28. J. W. Bohland, C. Wu, H. Barbas, H. Bokil, M. Bota, H. C. Breiter, H. T. Cline, J. C. Doyle, P. J. Freed, R. J. Greenspan, S. N. Haber, M. Hawrylycz, D. G. Herrera, C. C. Hilgetag, Z. J. Huang, A. Jones, E. G. Jones, H. J. Karten, D. Kleinfeld, R. Kötter, H. A. Lester, J. M. Lin, B. D. Mensh, S. Mikula, J. Panksepp, J. L. Price, J. Safdieh, C. B. Saper, N. D. Schiff, J. D. Schmahmann, B. W. Stillman, K. Svoboda, L. W. Swanson, A. W. Toga, D. C. Van Essen, J. D. Watson, and P. P. Mitra, “A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale,” PLOS Comput. Biol.5(3), e1000334 (2009). [CrossRef] [PubMed]
  29. A. Burkhalter and K. L. Bernardo, “Organization of corticocortical connections in human visual cortex,” Proc. Natl. Acad. Sci. U.S.A.86(3), 1071–1075 (1989). [CrossRef] [PubMed]
  30. O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express21(15), 18021–18033 (2013). [CrossRef] [PubMed]
  31. M. Hawrylycz, R. A. Baldock, A. Burger, T. Hashikawa, G. A. Johnson, M. Martone, L. Ng, C. Lau, S. D. Larson, J. Nissanov, L. Puelles, S. Ruffins, F. Verbeek, I. Zaslavsky, and J. Boline, “Digital atlasing and standardization in the mouse brain,” PLOS Comput. Biol.7(2), e1001065 (2011). [CrossRef] [PubMed]
  32. C. Schmitz and P. R. Hof, “Design-based stereology in neuroscience,” Neuroscience130(4), 813–831 (2005). [CrossRef] [PubMed]
  33. T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten, “Serial two-photon tomography for automated ex vivo mouse brain imaging,” Nat. Methods9(3), 255–258 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (2349 KB)     
» Media 2: MOV (19154 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited