OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2003–2014

Local assessment of myelin health in a multiple sclerosis mouse model using a 2D Fourier transform approach

Steve Bégin, Erik Bélanger, Sophie Laffray, Benoît Aubé, Émilie Chamma, Jonathan Bélisle, Steve Lacroix, Yves De Koninck, and Daniel Côté  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 10, pp. 2003-2014 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an automated two-dimensional Fourier transform (2D-FT) approach to analyze the local organization of myelinated axons in the spinal cord. Coherent anti-Stokes Raman scattering (CARS) microscopy was used to observe lesions in a commonly used animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). A 2D-FT was applied on the CARS images to find the average orientation and directional anisotropy of the fibers within contiguous image domains. We introduce the corrected correlation parameter (CCP), a measure of the correlation between orientations of adjacent domains. We show that in the EAE animal model of MS, the CCP can be used to quantify the degree of organization/disorganization in the myelin structure. This analysis was applied to a large image dataset from animals at different clinical scores and we show that some descriptors of the CCP probability density function are strongly correlated with the clinical scores. This procedure, compatible with live animal imaging, has been developed to perform local in situ evaluation of myelinated axons afflicted by EAE.

© 2013 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(100.2960) Image processing : Image analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(180.6900) Microscopy : Three-dimensional microscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Image Processing

Original Manuscript: June 7, 2013
Manuscript Accepted: June 19, 2013
Published: September 5, 2013

Steve Bégin, Erik Bélanger, Sophie Laffray, Benoît Aubé, Émilie Chamma, Jonathan Bélisle, Steve Lacroix, Yves De Koninck, and Daniel Côté, "Local assessment of myelin health in a multiple sclerosis mouse model using a 2D Fourier transform approach," Biomed. Opt. Express 4, 2003-2014 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K.-A. Nave, “Myelination and the trophic support of long axons,” Nat. Rev. Neurosci.11, 275–283 (2010). [CrossRef] [PubMed]
  2. I. L. King, T. L. Dickendesher, and B. M. Segal, “Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease,” Blood113, 3190–3197 (2009).
  3. P. van der Valk and S. Amor, “Preactive lesions in multiple sclerosis,” Curr. Opin. Neurol.22, 207–213 (2009). [PubMed]
  4. M. Filippi, M. A. Rocca, F. Barkhof, W. Brück, J. T. Chen, G. Comi, G. DeLuca, N. De Stefano, B. J. Erickson, N. Evangelou, F. Fazekas, J. J. G. Geurts, C. Lucchinetti, D. H. Miller, D. Pelletier, B. F. G. Popescu, and H. Lassmann, “Association between pathological and MRI findings in multiple sclerosis,” Lancet Neurol.11, 349–360 (2012). [CrossRef] [PubMed]
  5. E. Mix, H. Meyer-Rienecker, H.-P. Hartung, and U. K. Zettl, “Animal models of multiple sclerosis–potentials and limitations,” Prog. Neurobiol.92, 386–404 (2010). [CrossRef] [PubMed]
  6. B. A. ’t Hart, B. Gran, and R. Weissert, “EAE: imperfect but useful models of multiple sclerosis,” Trends Mol. Med.17, 119–125 (2011). [CrossRef] [PubMed]
  7. D. A. Brown and P. E. Sawchenko, “Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis,” J. Comp. Neurol.502, 236–260 (2007). [CrossRef] [PubMed]
  8. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1, 883–909 (2008). [CrossRef]
  9. S. Bégin, E. Bélanger, S. Laffray, R. Vallée, and D. Côté, “In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast,” J. Biophotonics2, 632–642 (2009). [CrossRef] [PubMed]
  10. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol.7, 137–145 (2011). [CrossRef] [PubMed]
  11. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J.89, 581–591 (2005). [CrossRef] [PubMed]
  12. Y. Fu, H. Wang, T. B. Huff, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neurosci. Res.85, 2870–2881 (2007). [CrossRef] [PubMed]
  13. J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt.16, 021109 (2011).
  14. Y. Fu, T. J. Frederick, T. B. Huff, G. E. Goings, S. D. Miller, and J.-X. Cheng, “Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt.16, 106006 (2011).
  15. Y. Shi, D. Zhang, T. B. Huff, X. Wang, R. Shi, X.-M. Xu, and J.-X. Cheng, “Longitudinal in vivo coherent anti-Stokes Raman scattering imaging of demyelination and remyelination in injured spinal cord,” J. Biomed. Opt.16, 106012 (2011).
  16. C. W. Freudiger, R. Pfannl, D. A. Orringer, B. G. Saar, M. Ji, Q. Zeng, L. Ottoboni, Y. Wei, W. Ying, C. Waeber, J. R. Sims, P. L. De Jager, O. Sagher, M. A. Philbert, X. Xu, S. Kesari, X. S. Xie, and G. S. Young, “Multicolored stain-free histopathology with coherent Raman imaging,” Lab. Invest.92, 1492–1502 (2012). [CrossRef] [PubMed]
  17. E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express17, 18419–18432 (2009). [CrossRef]
  18. E. Bélanger, F. P. Henry, R. Vallée, M. A. Randolph, I. E. Kochevar, J. M. Winograd, C. P. Lin, and D. Côté, “In vivo evaluation of demyelination and remyelination in a nerve crush injury model,” Biomed. Opt. Express2, 2698–2708 (2011).
  19. P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express17, 4868–4878 (2009). [CrossRef] [PubMed]
  20. R. A. Rao, M. R. Mehta, and K. C. Toussaint, “Fourier transform-second-harmonic generation imaging of biological tissues,” Opt. Express17, 14534–14542 (2009). [CrossRef] [PubMed]
  21. R. Cicchi, N. Vogler, D. Kapsokalyvas, B. Dietzek, J. Popp, and F. S. Pavone, “From molecular structure to tissue architecture: collagen organization probed by SHG microscopy,” J. Biophotonics6, 129–142 (2013). [CrossRef]
  22. A. Ghazaryan, H. F. Tsai, G. Hayrapetyan, W.-L. Chen, Y.-F. Chen, M. Y. Jeong, C.-S. Kim, S.-J. Chen, and C.-Y. Dong, “Analysis of collagen fiber domain organization by Fourier second harmonic generation microscopy,” J. Biomed. Opt.18, 31105 (2013). [CrossRef]
  23. I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron.14, 10–18 (2008). [CrossRef]
  24. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett.7, 350–352 (1982). [CrossRef] [PubMed]
  25. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82, 4142–4145 (1999). [CrossRef]
  26. S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics25, 1463–1465 (2009).
  27. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewood Cliffs, 1990).
  28. A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem.36, 1627–1639 (1964). [CrossRef]
  29. P. L. Rosin, “Measuring shape: ellipticity, rectangularity, and triangularity,” Mach. Vis. Appl.14, 172–184 (2003).
  30. J. Flusser and T. Suk, “Pattern recognition by affine moment invariants,” Pattern Recogn.26, 167–174 (1993). [CrossRef]
  31. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).
  32. E. Bélanger, J. Crépeau, S. Laffray, R. Vallée, Y. De Koninck, and D. Côté, “Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy,” J. Biomed. Opt.17, 021107 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited