OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2015–2031

Compensation of optode sensitivity and position errors in diffuse optical tomography using the approximation error approach

Meghdoot Mozumder, Tanja Tarvainen, Simon R. Arridge, Jari Kaipio, and Ville Kolehmainen  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 10, pp. 2015-2031 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffuse optical tomography is highly sensitive to measurement and modeling errors. Errors in the source and detector coupling and positions can cause significant artifacts in the reconstructed images. Recently the approximation error theory has been proposed to handle modeling errors. In this article, we investigate the feasibility of the approximation error approach to compensate for modeling errors due to inaccurately known optode locations and coupling coefficients. The approach is evaluated with simulations. The results show that the approximation error method can be used to recover from artifacts in reconstructed images due to optode coupling and position errors.

© 2013 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6960) Medical optics and biotechnology : Tomography
(290.7050) Scattering : Turbid media

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: May 2, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: August 29, 2013
Published: September 6, 2013

Meghdoot Mozumder, Tanja Tarvainen, Simon R. Arridge, Jari Kaipio, and Ville Kolehmainen, "Compensation of optode sensitivity and position errors in diffuse optical tomography using the approximation error approach," Biomed. Opt. Express 4, 2015-2031 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inv. Probl.25, 123010 (2009). Topical Review. [CrossRef]
  2. D. Leff, O. Warren, L. Enfield, A. Gibson, T. Athanasiou, D. Patten, J. Hebden, G. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: A systematic review,” Breast Cancer Res. Tr.108, 9–22 (2008). [CrossRef]
  3. A. Gibson, J. Hebden, and S. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43 (2005). Topical Review. [CrossRef] [PubMed]
  4. J. J. Stott, J. P. Culver, S. R. Arridge, and D. A. Boas, “Optode positional calibration in diffuse optical tomography.” Appl. Opt.42, 3154–62 (2003). [CrossRef] [PubMed]
  5. T. Tarvainen, V. Kolehmainen, M. Vauhkonen, A. Vanne, A. P. Gibson, M. Schweiger, S. R. Arridge, and J. P. Kaipio, “Computational calibration method for optical tomography.” Appl. Opt.44, 1879–88 (2005). [CrossRef] [PubMed]
  6. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71, 3415 (2000). [CrossRef]
  7. V. Ntziachristos, B. Chance, and A. G. Yodh, “Differential diffuse optical tomography,” Opt. Express5, 565–570 (1999). [CrossRef]
  8. H. Xu, B. W. Pogue, R. Springett, and H. Dehghani, “Spectral derivative based image reconstruction provides inherent insensitivity to coupling and geometric errors,” Opt. Lett.30, 2912–2914 (2005). [CrossRef] [PubMed]
  9. I. Nissila, T. Noponen, K. Kotilahti, T. Katila, L. Lipiainen, T. Tarvainen, M. Schweiger, and S. Arridge, “Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography,” Rev. Sci. Instrum.76, 044302 (2005). [CrossRef]
  10. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. L. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography.” Appl. Opt.39, 6466–86 (2000). [CrossRef]
  11. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38, 2950–2961 (1999). [CrossRef]
  12. D. Boas, T. Gaudette, and S. Arridge, “Simultaneous imaging and optode calibration with diffuse optical tomography.” Opt. Express8, 263–70 (2001). [CrossRef] [PubMed]
  13. M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46, 2743–2756 (2007). [CrossRef] [PubMed]
  14. R. Fukuzawa, S. Okawa, S. Matsuhashi, T. Kusaka, Y. Tanikawa, Y. Hoshi, F. Gao, and Y. Yamada, “Reduction of image artifacts induced by change in the optode coupling in time-resolved diffuse optical tomography.” J. Biomed. Opt.16, 116022 (2011). [CrossRef] [PubMed]
  15. S. Oh, A. B. Milstein, R. P. Millane, C. A. Bouman, and K. J. Webb, “Source-detector calibration in three-dimensional Bayesian optical diffusion tomography.” J. Opt. Soc. Am. A19, 1983–1993 (2002). [CrossRef]
  16. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28, 2061–2063 (2003). [CrossRef] [PubMed]
  17. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems (Springer, New York, 2005).
  18. Kaipio and E. Somersalo, “Discretization model reduction and inverse crimes,” J. Comput. Appl. Math.198, 493–504 (2007). [CrossRef]
  19. V. Kolehmainen, T. Tarvainen, S. R. Arridge, and J. P. Kaipio, “Marginalization of uninteresting distributed parameters in inverse problems - application to diffuse optical tomography,” Int. J. Uncertainty Quantification1, 1–17 (2011). [CrossRef]
  20. S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, “Approximation errors and model reduction with an application in optical diffusion tomography,” Inv. Probl.22, 175–195 (2006). [CrossRef]
  21. J. Heino, E. Somersalo, and J. Kaipio, “Compensation for geometric mismodelling by anisotropies in optical tomography,” Opt. Express13, 296–308 (2005). [CrossRef] [PubMed]
  22. J. Heiskala, V. Kolehmainen, T. Tarvainen, J. P. Kaipio, and S. R. Arridge, “Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging,” J. Biomed. Opt.17, 096012 (2012). [CrossRef]
  23. V. Kolehmainen, M. Schweiger, I. Nissilä, T. Tarvainen, S. R. Arridge, and J. P. Kaipio, “Approximation errors and model reduction in three-dimensional diffuse optical tomography,” J. Opt. Soc. Am. A26, 2257–2268 (2009). [CrossRef]
  24. T. Tarvainen, V. Kolehmainen, A. Pulkkinen, M. Vauhkonen, M. Schweiger, S. R. Arridge, and J. P. Kaipio, “An approximation error approach for compensating for modelling errors between the radiative transfer equation and the diffusion approximation in diffuse optical tomography,” Inv. Probl.26, 015005 (2010). [CrossRef]
  25. T. Tarvainen, V. Kolehmainen, J. P. Kaipio, and S. R. Arridge, “Corrections to linear methods for diffuse optical tomography using approximation error modelling.” Biomed. Opt. Express1, 209–222 (2010). [CrossRef]
  26. A. Ishimaru, Wave Propagation and Scattering in Random Media(Academic, New York, 1978).
  27. S. Arridge, M. Schweiger, M. Hiraoka, and D. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys.20, 299–309 (1993). [CrossRef] [PubMed]
  28. M. Schweiger, S. R. Arridge, and I. Nissilä, “Gauss-Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol.50, 2365–2386 (2005). [CrossRef] [PubMed]
  29. C. Lieberman, K. Willcox, and O. Ghattas, “Parameter and state model reduction for large-scale statistical inverse problems,” SIAM J. Sci. Comput.32, 2523–2542 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited