OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2032–2050

Multi-penalty conditional random field approach to super-resolved reconstruction of optical coherence tomography images

Ameneh Boroomand, Alexander Wong, Edward Li, Daniel S. Cho, Betty Ni, and Kostandinka Bizheva  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 2032-2050 (2013)
http://dx.doi.org/10.1364/BOE.4.002032


View Full Text Article

Enhanced HTML    Acrobat PDF (2840 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Improving the spatial resolution of Optical Coherence Tomography (OCT) images is important for the visualization and analysis of small morphological features in biological tissue such as blood vessels, membranes, cellular layers, etc. In this paper, we propose a novel reconstruction approach to obtaining super-resolved OCT tomograms from multiple lower resolution images. The proposed Multi-Penalty Conditional Random Field (MPCRF) method combines four different penalty factors (spatial proximity, first and second order intensity variations, as well as a spline-based smoothness of fit) into the prior model within a Maximum A Posteriori (MAP) estimation framework. Test carried out in retinal OCT images illustrate the effectiveness of the proposed MPCRF reconstruction approach in terms of spatial resolution enhancement, as compared to previously published super resolved image reconstruction methods. Visual assessment of the MPCRF results demonstrate the potential of this method in better preservation of fine details and structures of the imaged sample, as well as retaining the sharpness of biological tissue boundaries while reducing the effects of speckle noise inherent to OCT. Quantitative evaluation using imaging metrics such as Signal-to-Noise Ratio (SNR), Contrast to Noise Ratio (CNR), Equivalent Number of Looks (ENL), and Edge Preservation Parameter show significant visual quality improvement with the MPCRF approach. Therefore, the proposed MPCRF reconstruction approach is an effective tool for enhancing the spatial resolution of OCT images without the necessity for significant imaging hardware modifications.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(110.4500) Imaging systems : Optical coherence tomography
(330.6130) Vision, color, and visual optics : Spatial resolution

ToC Category:
Image Processing

History
Original Manuscript: June 3, 2013
Revised Manuscript: August 6, 2013
Manuscript Accepted: August 7, 2013
Published: September 6, 2013

Citation
Ameneh Boroomand, Alexander Wong, Edward Li, Daniel S. Cho, Betty Ni, and Kostandinka Bizheva, "Multi-penalty conditional random field approach to super-resolved reconstruction of optical coherence tomography images," Biomed. Opt. Express 4, 2032-2050 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-2032


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer, 2008). [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and , “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  3. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett.28, 1921–1923 (2003). [CrossRef] [PubMed]
  4. J. Schmitt, S. Xiang, and K. Yung, “Speckle in optical coherence tomography,” Biomed. Opt.4, 95–105 (1999). [CrossRef]
  5. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20, 1337–1359 (2012). [CrossRef] [PubMed]
  6. D. Yin, Y. Gu, and P. Xue, “Speckle-constrained variational methods for image restoration in optical coherence tomography,” J. Opt. Soc. Am. A30, 878–885 (2013). [CrossRef]
  7. L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Toth, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express3, 927–942 (2012). [CrossRef] [PubMed]
  8. R. Zawadzki, A. Fuller, S. Choi, D. Wiley, B. Hamann, and J. Werner, “Correction of motion artifacts and scanning beam distortions in 3d ophthalmic optical coherence tomography imaging,” in “Proc. SPIE,” vol. 6426 (2007) pp. 642607. [CrossRef]
  9. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt.49, 1480–1488 (2010). [CrossRef] [PubMed]
  10. B. Bouma and Tearney, Handbook of optical coherence tomography (Marcel DekkerNew York:, 2002).
  11. J. Gong, B. Liu, Y. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express14, 5909–5915 (2006). [CrossRef] [PubMed]
  12. D. Merino, C. Dainty, A. Bradu, and A. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express14, 3345–3353 (2006). [CrossRef] [PubMed]
  13. M. Brezinski, Optical coherence tomography: principles and applications (Academic press, 2006).
  14. A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys.66, 239 (2003). [CrossRef]
  15. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A26, 72–77 (2009). [CrossRef]
  16. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49, 2014–2021 (2010). [CrossRef] [PubMed]
  17. C. Liu, A. Wong, K. Bizheva, P. Fieguth, and H. Bie, “Homotopic, non-local sparse reconstruction of optical coherence tomography imagery,” Opt. Express20, 10200–10211 (2012). [CrossRef] [PubMed]
  18. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25, 545–547 (2000). [CrossRef]
  19. F. Luan and Y. Wu, “Application of rpca in optical coherence tomography for speckle noise reduction,” Laser Phys. Lett.10, 035603 (2013). [CrossRef]
  20. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per a-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3, 1182–1199 (2012). [CrossRef] [PubMed]
  21. B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol.89, 207–212 (2005). [CrossRef] [PubMed]
  22. M. Szkulmowski and M. Wojtkowski, “Averaging techniques for oct imaging,” Opt. Express21, 9757–9773 (2013). [CrossRef] [PubMed]
  23. A. Giani, M. Pellegrini, A. Invernizzi, M. Cigada, and G. Staurenghi, “Aligning scan locations from consecutive spectral-domain optical coherence tomography examinations: a comparison among different strategies,” IOVS53, 7637–7643 (2012).
  24. J. J. Liu, I. Grulkowski, M. F. Kraus, B. Potsaid, C. D. Lu, B. Baumann, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “In vivo imaging of the rodent eye with swept source/fourier domain oct,” Biomed. Opt. Express4, 351–363 (2013). [CrossRef] [PubMed]
  25. T. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration method and clinical examples,” J. Biomed. Opt.12, 41208–41208 (2007). [CrossRef]
  26. S. Borman and R. L. Stevenson, “Super-resolution from image sequences-a review,” in “Circuits and Systems, 1998. Proceedings. 1998 Midwest Symposium on,” (IEEE, 1998), pp. 374–378.
  27. S. Park, M. Park, and M. Kang, “Super-resolution image reconstruction: a technical overview,” Signal Process. Mag., IEEE20, 21–36 (2003). [CrossRef]
  28. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J Imag. Syst. Tech.14, 47–57 (2004). [CrossRef]
  29. P. Milanfar, Super-resolution imaging (CRC Press, 2010).
  30. Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” IOVS54, 1722–1729 (2013).
  31. D. Williams, Y. Zheng, F. Bao, and A. Elsheikh, “Automatic segmentation of anterior segment optical coherence tomography images,” J Biomed. Opt18, 056003 (2013). [CrossRef]
  32. A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” MICCAI5762, 649–656 (2009).
  33. D. Rajan and S. Chaudhuri, “Generalized interpolation and its application in super-resolution imaging,” Imag. Vision Comput.19, 957–969 (2001). [CrossRef]
  34. R. Tsai and T. S. Huang, “Multiframe image restoration and registration,” A Comp. Vis. Image Process.1, 317–339 (1984).
  35. S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process.13, 1327–1344 (2004). [CrossRef] [PubMed]
  36. J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE Trans. Image Process.19, 2861–2873 (2010). [CrossRef]
  37. M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Efficient fourier-wavelet super-resolution,” IEEE Trans. Image Process.19, 2669–2681 (2010). [CrossRef] [PubMed]
  38. W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-resolution,” IEEE Comput. Graph. Appl.22, 56–65 (2002). [CrossRef]
  39. M. Robinson, S. Chiu, J. Lo, C. Toth, J. Izatt, and S. Farsiu, “New applications of super-resolution in medical imaging,” in “Super-Resolution Imaging,” P. Milanfar, ed. (CRC Press, 2010), chap. 13, pp. 384–412.
  40. S. Farsiu, M. Elad, and P. Milanfar, “Constrained, globally optimal, multi-frame motion estimation,” in “Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on,” (IEEE, 2005), pp. 1396–1401. [CrossRef]
  41. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. Image Process.16, 349–366 (2007). [CrossRef] [PubMed]
  42. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in “Computer Vision, 1998. Sixth International Conference on,” (IEEE, 1998), pp. 839–846.
  43. P. Rosenbloom, “The method of steepest descent,” in “Proc. of Symp. in Applied Math,”, vol. 6 (1956), vol. 6, pp. 127–176. [CrossRef]
  44. X. Wang, “Method of steepest descent and its applications,” IEEE Microw. Wireless Compon. Lett.12, 24–26 (2008).
  45. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett.33, 2479–2481 (2008). [PubMed]
  46. R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. ASSP29, 1153–1160 (1981). [CrossRef]
  47. S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” MMS.4, 460–489 (2005).
  48. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33, 156–158 (2008). [CrossRef] [PubMed]
  49. P. Puvanathasan and K. Bizheva, “Interval type-ii fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express17, 733–746 (2009). [CrossRef] [PubMed]
  50. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express18, 8338–8352 (2010). [CrossRef] [PubMed]
  51. K. H. Cheng, E. Y. Lam, B. A. Standish, and V. X. Yang, “Speckle reduction of endovascular optical coherence tomography using a generalized divergence measure,” Opt. Lett.37, 2871–2873 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited