OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2107–2123

An ideal-observer framework to investigate signal detectability in diffuse optical imaging

Abhinav K. Jha, Eric Clarkson, and Matthew A. Kupinski  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 2107-2123 (2013)
http://dx.doi.org/10.1364/BOE.4.002107


View Full Text Article

Enhanced HTML    Acrobat PDF (1370 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the emergence of diffuse optical tomography (DOT) as a non-invasive imaging modality, there is a requirement to evaluate the performance of the developed DOT systems on clinically relevant tasks. One such important task is the detection of high-absorption signals in the tissue. To investigate signal detectability in DOT systems for system optimization, an appropriate approach is to use the Bayesian ideal observer, but this observer is computationally very intensive. It has been shown that the Fisher information can be used as a surrogate figure of merit (SFoM) that approximates the ideal observer performance. In this paper, we present a theoretical framework to use the Fisher information for investigating signal detectability in DOT systems. The usage of Fisher information requires evaluating the gradient of the photon distribution function with respect to the absorption coefficients. We derive the expressions to compute the gradient of the photon distribution function with respect to the scattering and absorption coefficients. We find that computing these gradients simply requires executing the radiative transport equation with a different source term. We then demonstrate the application of the SFoM to investigate signal detectability in DOT by performing various simulation studies, which help to validate the proposed framework and also present some insights on signal detectability in DOT.

© 2013 OSA

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(110.7050) Imaging systems : Turbid media
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(110.3055) Imaging systems : Information theoretical analysis

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: June 12, 2013
Revised Manuscript: August 21, 2013
Manuscript Accepted: August 26, 2013
Published: September 9, 2013

Citation
Abhinav K. Jha, Eric Clarkson, and Matthew A. Kupinski, "An ideal-observer framework to investigate signal detectability in diffuse optical imaging," Biomed. Opt. Express 4, 2107-2123 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-2107


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, 1–43 (2005). [CrossRef]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18, 57–75 (2001). [CrossRef]
  3. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Tran. A. Math. Phys. Eng. Sci.367, 3055–3072 (2009). [CrossRef]
  4. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. Royal Soc. A367, 3073–3093 (2009). [CrossRef]
  5. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” App. Optics42, 135–146 (2003). [CrossRef]
  6. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol.13, 195–202 (2006). [CrossRef] [PubMed]
  7. T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage31, 1426–1433 (2006). [CrossRef] [PubMed]
  8. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Nat. Acad. Sciences104, 12169–12174 (2007). [CrossRef]
  9. A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol.49, 1147–1163 (2004). [CrossRef] [PubMed]
  10. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opinion in Biotech.16, 79–88 (2005). [CrossRef]
  11. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt.42, 5181–5190 (2003). [CrossRef] [PubMed]
  12. X. Intes, J. Yu, A. Yodh, and B. Chance, “Development and evaluation of a multi-wavelength multi-channel time resolved optical instrument for NIR/MRI mammography co-registration,” in “Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference,” (2002), pp. 91–92.
  13. G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Tech. Cancer Res. Treatment5, 351–363 (2006).
  14. N. Biswal, Y. Xu, and Q. Zhu, “Imaging tumor oxyhemoglobin and deoxyhemoglobin concentrations with ultrasound-guided diffuse optical tomography.” Tech. Cancer Res. Treatment10, 417 (2011).
  15. S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol. Imaging Biol.11, 64–70 (2009). [CrossRef]
  16. B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt.11, 33001 (2006). [CrossRef] [PubMed]
  17. V. C. Kavuri, Z. J. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography,” Biomed. Opt. Express3, 943–957 (2012). [CrossRef] [PubMed]
  18. H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed Opt.15, 046005 (2010). [CrossRef] [PubMed]
  19. D. Kang and M. A. Kupinski, “Signal detectability in diffusive media using phased arrays in conjunction with detector arrays,” Opt. Express19, 12261–12274 (2011). [CrossRef] [PubMed]
  20. S. P. Morgan, “Detection performance of a diffusive wave phased array,” Appl. Opt.43, 2071–2078 (2004). [CrossRef] [PubMed]
  21. Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express9, 212–224 (2001). [CrossRef] [PubMed]
  22. S. Morgan and K. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express7, 540–546 (2000). [CrossRef] [PubMed]
  23. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28, 2061–2063 (2003). [CrossRef] [PubMed]
  24. H. Niu, P. Guo, X. Song, and T. Jiang, “Improving depth resolution of diffuse optical tomography with an exponential adjustment method based on maximum singular value of layered sensitivity,” Chin. Opt. Lett.6, 886–888 (2008). [CrossRef]
  25. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004), 1st ed.
  26. F. Shen and E. Clarkson, “Using Fisher information to approximate ideal-observer performance on detection tasks for lumpy-background images,” J. Opt. Soc. Am. A23, 2406–2414 (2006). [CrossRef]
  27. E. Clarkson and F. Shen, “Fisher information and surrogate figures of merit for the task-based assessment of image quality,” J. Opt. Soc. Am. A27, 2313–2326 (2010). [CrossRef]
  28. Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model,” Front Neuroenergetics4, 6 (2012). [CrossRef] [PubMed]
  29. R. Ziegler, B. Brendel, A. Schipper, R. Harbers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: I. Theory and experiment,” Phys. Med. Biol.54, 399–412 (2009). [CrossRef]
  30. R. Ziegler, B. Brendel, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical tomography systems: II. Analysis of slab and cup geometry for breast imaging,” Phys. Med. Biol.54, 413–431 (2009). [CrossRef]
  31. S. Young, M. A. Kupinski, and A. K. Jha, “Estimating signal detectability in a model diffuse optical imaging system,” in “Biomedical Optics,” (Optical Society of America, 2010), p. BSuD26.
  32. A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. A. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transfer equation: A study using the Neumann-series approach,” J. Opt. Soc. Amer. A29, 1741–1757 (2012). [CrossRef]
  33. A. K. Jha, M. A. Kupinski, H. H. Barrett, E. Clarkson, and J. H. Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A29, 1885–1899 (2012). [CrossRef]
  34. V. Toronov, E. D’Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, “Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain,” Opt. Express11, 2717–2729 (2003). [CrossRef] [PubMed]
  35. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J.93, 70–83 (1941). [CrossRef]
  36. M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol.54, 2493–2509 (2009). [CrossRef] [PubMed]
  37. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Hybrid radiative-transfer-diffusion model for optical tomography,” Appl. Opt.44, 876–886 (2005). [CrossRef] [PubMed]
  38. T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt.39, 6453–6465 (2000). [CrossRef]
  39. Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media: the ballistic to diffusive transition,” Phys. Rev. E60, 4843–4850 (1999). [CrossRef]
  40. E. Aydin, C. de Oliveira, and A. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectr. Rad. Trans.84, 247–260 (2004). [CrossRef]
  41. A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys.220, 441–470 (2006). [CrossRef]
  42. A. H. Hielscher and R. E. Alcouffe, “Discrete-ordinate transport simulations of light propagation in highly forward scattering heterogeneous media,” in “Advances in Optical Imaging and Photon Migration,” (Optical Society of America, 1998), p. ATuC2.
  43. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett.23, 882–884 (1998). [CrossRef]
  44. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20, 299–309 (1993). [CrossRef] [PubMed]
  45. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17, 20178–20190 (2009). [CrossRef] [PubMed]
  46. M. A. Kupinski, E. Clarkson, K. Gross, and J. W. Hoppin, “Optimizing imaging hardware for estimation tasks,” in “Proc. SPIE Medical Imaging,” (2003), pp. 309–313. [CrossRef]
  47. A. K. Jha, “Retrieving Information from Scattered Photons in Medical Imaging,” Ph.D. thesis, College of Optical Sciences, University of Arizona, Tucson, AZ, USA (2013).
  48. B. W. Miller, “High-Resolution Gamma-Ray Imaging with Columnar Scintillators,” Ph.D. thesis, College of Optical Sciences, University of Arizona, Tucson, AZ, USA (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited