OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2138–2149

3D static elastography at the micrometer scale using Full Field OCT

Amir Nahas, Morgane Bauer, Stéphane Roux, and A. Claude Boccara  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 10, pp. 2138-2149 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Full-Field OCT (FF-OCT) is able to image biological tissues in 3D with micrometer resolution. In this study we add elastographic contrast to the FF-OCT modality. By combining FF-OCT with elastography, we create a virtual palpation map at the micrometer scale. We present here a proof of concept on multi-layer phantoms and preliminary results on ex vivo biological samples such as porcine cornea, human breast tissues and rat heart. The 3D digital volume correlation that is used in connection with the 3D stack of images allows to access to the full 3D strain tensor and to reveal stiffness anisotropy.

© 2013 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.0180) Microscopy : Microscopy
(180.3170) Microscopy : Interference microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(180.1655) Microscopy : Coherence tomography

ToC Category:
Optical Coherence Tomography

Original Manuscript: June 11, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 1, 2013
Published: September 12, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Amir Nahas, Morgane Bauer, Stéphane Roux, and A. Claude Boccara, "3D static elastography at the micrometer scale using Full Field OCT," Biomed. Opt. Express 4, 2138-2149 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sarvazyan, Shear acoustic properties of soft biological tissues in medical diagnostics, J. Acoust. Soc. Am.93(4), 2329–2330 (1993). [CrossRef]
  2. Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, Magnetic resonance elastography: a review, Clin Anat.23, 497–511 (2010). [CrossRef] [PubMed]
  3. M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008). [CrossRef]
  4. J. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue, Opt. Express3(6), 199211 (1998). [CrossRef]
  5. C. Sun, B. Standish, and V. X. D. Yang, Optical coherence elastography: current status and future applications, J. Biomed. Optics16(4), 043001 (2011). [CrossRef]
  6. A. S. Khalil, R. C. Chan, A. H. Chau, B.E. Bouma, and M. R. K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue, Ann. Biomed. Eng.33(11), 1631–1639 (2005).
  7. R. K. Wang, S. Kirkpatrick, and M. Hinds, Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time, Appl. Phys. Lett.90(16), 164105 (2007). [CrossRef]
  8. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue, Appl. Phys. Lett.89(14), 144103 (2006). [CrossRef]
  9. X. Liang, V. Crecea, and S. A. Boppart, Dynamic Optical Coherence Elastography: a Review, J. Innov. Opt. Health Sci.3(4), 221–233 (2010). [CrossRef] [PubMed]
  10. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011). [CrossRef]
  11. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, Ultrahigh-resolution full-field optical coherence tomography, Appl. Opt.43(14), 2874–2883 (2004). [CrossRef] [PubMed]
  12. B. F. Kennedy, S. Howe Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, Strain estimation in phase-sensitive optical coherence elastography, Biomed. Opt. Express3(8), 1865–1879 (2012). [CrossRef] [PubMed]
  13. H. Leclerc, J.N. Pri, F. Hild, and S. Roux, Digital Volume Correlation: What are the limits to the spatial resolution?, Meca. Ind.13, 361–371 (2013). [CrossRef]
  14. S. Roux, F. Hild, P. Viot, and D. Bernard, Three dimensional image correlation from X-Ray computed tomography of solid foam, Compos. Part A-Appl. S.39, 1253–1265 (2008). [CrossRef]
  15. H Wang Zhixin, Polydimethylsiloxane Mechanical Properties Measured by Macroscopic Compression and NanoindentationTechniques(2011). Graduate School Theses and Dissertations.
  16. K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and A. C. Boccara, Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography, J. Opt. A-Pure Appl. Op.7(8), 368373 (2005). [CrossRef]
  17. O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).
  18. J. Bercoff, M. Tanter, and M. Fink, Supersonic Shear Imaging : A New Technique for Soft Tissue Elasticity Mapping, IEEE Trans. Ultrason., Ferroelectr., Freq. Control51(4), 396–409 (2004). [CrossRef]
  19. J.-L. Gennisson, S. Catheline, S. Chaffai, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, J. Acoust. Soc. Am.114(1), 536–541 (2003). [CrossRef] [PubMed]
  20. W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012). [CrossRef]
  21. I. M. Ariel and J.B. Cleary, Breast Cancer Diagnosis and Treatment (New-York: McGraw-Hill, 1987).
  22. P. Wellman, R. H. Howe, E. Dalton, and K. A. Kern, Breast tissue stiffness in compression is correlated to histological diagnosis, Harvard BioRobotics Laboratory Technical Report, (1999).
  23. A. Latrive and A. C. Boccara, Full-field optical coherence tomography with a rigid endoscopic probe, Biomed. Opt. Express2(10), 2897–2904 (2011). [CrossRef]
  24. A. Latrive, A. Nahas, and A. C. Boccara, Multimodal endoscopic Full-Field OCT imaging and elasticity mapping with a needle-like probe, SPIE photonics WEST BIOS conference, paper 8571-25 of conference 8571 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited