OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2150–2165

Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography

Yu Gan and Christine P. Fleming  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 2150-2165 (2013)
http://dx.doi.org/10.1364/BOE.4.002150


View Full Text Article

Enhanced HTML    Acrobat PDF (6628 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abnormal changes in orientation of myofibers are associated with various cardiac diseases such as arrhythmia, irregular contraction, and cardiomyopathy. To extract fiber information, we present a method of quantifying fiber orientation and reconstructing three-dimensional tractography of myofibers using optical coherence tomography (OCT). A gradient based algorithm was developed to quantify fiber orientation in three dimensions and particle filtering technique was employed to track myofibers. Prior to image processing, three-dimensional image data set were acquired from all cardiac chambers and ventricular septum of swine hearts using OCT system without optical clearing. The algorithm was validated through rotation test and comparison with manual measurements. The experimental results demonstrate that we are able to visualize three-dimensional fiber tractography in myocardium tissues.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(110.4500) Imaging systems : Optical coherence tomography
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Image Processing

History
Original Manuscript: August 2, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 9, 2013
Published: September 13, 2013

Citation
Yu Gan and Christine P. Fleming, "Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography," Biomed. Opt. Express 4, 2150-2165 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-2150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. T. Armstrong, P. F. Binkley, P. B. Baker, P. D. Myerowitz, and C. V. Leier, “Quantitative investigation of cardiomyocyte hypertrophy and myocardial fibrosis over 6 years after cardiac transplantation,” J. Am. Coll. Cardiol.32(3), 704–710 (1998). [CrossRef] [PubMed]
  2. M. Shenasa, G. Hindricks, M. Borggrefe, G. Breithardt, M. E. Josephson, and D. P. Zipe, Cardiac Mapping (Wiley, 2012).
  3. A. G. Kléber and Y. Rudy, “Basic Mechanisms of Cardiac Impulse Propagation and Associated Arrhythmias,” Physiol. Rev.84(2), 431–488 (2004). [CrossRef] [PubMed]
  4. M. Pluijmert, W. Kroon, A. C. Rossi, P. H. M. Bovendeerd, and T. Delhaas, “Why SIT Works: Normal Function Despite Typical Myofiber Pattern in Situs Inversus Totalis (SIT) Hearts Derived by Shear-Induced Myofiber Reorientation,” PLOS Comput. Biol.8(7), e1002611 (2012). [CrossRef] [PubMed]
  5. M. D. Eggen, C. M. Swingen, and P. A. Iaizzo, “Analysis of fiber orientation in normal and failing human hearts using diffusion tensor MRI,” in ISBI '09., 2009), 642–645.
  6. W.-Y. I. Tseng, J. Dou, T. G. Reese, and V. J. Wedeen, “Imaging myocardial fiber disarray and intramural strain hypokinesis in hypertrophic cardiomyopathy with MRI,” J. Magn. Reson. Imaging23(1), 1–8 (2006). [CrossRef] [PubMed]
  7. D. D. J. Streeter, H. M. Spotnitz, D. P. Patel, J. J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969). [CrossRef] [PubMed]
  8. T. B. Leergaard, N. S. White, A. de Crespigny, I. Bolstad, H. D’Arceuil, J. G. Bjaalie, and A. M. Dale, “Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain,” PLoS ONE5(1), e8595 (2010). [CrossRef]
  9. P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In vivo fiber tractography using DT-MRI data,” Magn. Reson. Med.44(4), 625–632 (2000). [CrossRef] [PubMed]
  10. M.-T. Wu, W.-Y. I. Tseng, M.-Y. M. Su, C.-P. Liu, K.-R. Chiou, V. J. Wedeen, T. G. Reese, and C.-F. Yang, “Diffusion Tensor Magnetic Resonance Imaging Mapping the Fiber Architecture Remodeling in Human Myocardium After Infarction: Correlation With Viability and Wall Motion,” Circulation114(10), 1036–1045 (2006). [CrossRef] [PubMed]
  11. D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, “Diffusion MR tractography of the heart,” J. Cardiovasc. Magn. Reson.11(1), 47 (2009). [CrossRef] [PubMed]
  12. P. Helm, M. F. Beg, M. I. Miller, and R. L. Winslow, “Measuring and Mapping Cardiac Fiber and Laminar Architecture Using Diffusion Tensor Mr Imaging,” Ann. N. Y. Acad. Sci.1047(1), 296–307 (2005). [CrossRef] [PubMed]
  13. W. N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A. A. Hagège, M. Fink, and M. Tanter, “Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging,” IEEE Trans. Med. Imaging31(3), 554–562 (2012). [CrossRef] [PubMed]
  14. K. Tobita, J. B. Garrison, L. J. Liu, J. P. Tinney, and B. B. Keller, “Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads,” Anat. Rec. A Discov. Mol. Cell. Evol. Biol.283A(1), 193–201 (2005). [CrossRef] [PubMed]
  15. M.-R. Tsai, Y.-W. Chiu, M. T. Lo, and C.-K. Sun, “Second-harmonic generation imaging of collagen fibers in myocardium for atrial fibrillation diagnosis,” J. Biomed. Opt.15(2), 026002 (2010). [CrossRef] [PubMed]
  16. M. Axer., D. Grassel., M. Kleiner., J. Dammers., T. Dickscheid., J. Reckfort., T. Hutz., B. Eiben., U. Pietrzyk., K. Zilles., and K. Amunts., “High-Resolution Fiber Tact Reconstruction in the Human Brain by Means of Three-Dimensional Polarized Light Imaging,” Neuroinform 5(2011).
  17. P. Desrosiers, G. Michalowicz, P.-S. Jouk, Y. Usson, and Y. Zhu, “Modeling of the Optical Behavior of Myocardial Fibers in Polarized Light Imaging,” in Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, O. Camara, T. Mansi, M. Pop, K. Rhode, M. Sermesant, and A. Young, eds. (Springer Berlin Heidelberg, 2013), pp. 235–244.
  18. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer-Verlag Berlin Heidelberg, 2008).
  19. C. M. Ambrosi, N. Moazami, A. M. Rollins, and I. R. Efimov, “Virtual histology of the human heart using optical coherence tomography,” J. Biomed. Opt.14(5), 054002 (2009). [CrossRef] [PubMed]
  20. C. P. Fleming, K. J. Quan, and A. M. Rollins, “Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography,” J. Biomed. Opt.15(4), 041510 (2010). [CrossRef] [PubMed]
  21. C. P. Fleming, K. J. Quan, H. Wang, G. Amit, and A. M. Rollins, “In vitro characterization of cardiac radiofrequency ablation lesions using optical coherence tomography,” Opt. Express18(3), 3079–3092 (2010). [CrossRef] [PubMed]
  22. W. J. Hucker, C. M. Ripplinger, C. P. Fleming, V. V. Fedorov, A. M. Rollins, and I. R. Efimov, “Bimodal biophotonic imaging of the structure-function relationship in cardiac tissue,” J. Biomed. Opt.13(5), 054012 (2008). [CrossRef] [PubMed]
  23. C. P. Fleming, C. M. Ripplinger, B. Webb, I. R. Efimov, and A. M. Rollins, “Quantification of cardiac fiber orientation using optical coherence tomography,” J. Biomed. Opt.13(3), 030505 (2008). [CrossRef] [PubMed]
  24. C. J. Goergen, H. Radhakrishnan, S. Sakadžić, E. T. Mandeville, E. H. Lo, D. E. Sosnovik, and V. J. Srinivasan, “Optical coherence tractography using intrinsic contrast,” Opt. Lett.37(18), 3882–3884 (2012). [CrossRef] [PubMed]
  25. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express4(3), 460–465 (2013). [CrossRef] [PubMed]
  26. C. M. Ambrosi, V. V. Fedorov, R. B. Schuessler, A. M. Rollins, and I. R. Efimov, “Quantification of fiber orientation in the canine atrial pacemaker complex using optical coherence tomography,” J. Biomed. Opt.17(7), 071309 (2012). [CrossRef] [PubMed]
  27. D. D. Streeter, H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick, “Fiber orientation in the canine left ventricle during diastole and systole,” Circ. Res.24(3), 339–347 (1969). [CrossRef] [PubMed]
  28. N. Sperelakis, Y. Kurachi, A. Terzic, and M. V. Cohen, Heart Physiology and Pathophysiology (Elsevier Science, 2000).
  29. P. J. Hunter, P. M. Nielsen, B. H. Smaill, I. J. LeGrice, and I. W. Hunter, “An anatomical heart model with applications to myocardial activation and ventricular mechanics,” Crit. Rev. Biomed. Eng.20(5-6), 403–426 (1992). [PubMed]
  30. A. J. Pope, G. B. Sands, B. H. Smaill, and I. J. LeGrice, “Three-dimensional transmural organization of perimysial collagen in the heart,” Am. J. Physiol. Heart Circ. Physiol.295(3), H1243–H1252 (2008). [CrossRef] [PubMed]
  31. D. F. Scollan, A. Holmes, J. Zhang, and R. L. Winslow, “Reconstruction of Cardiac Ventricular Geometry and Fiber Orientation Using Magnetic Resonance Imaging,” Ann. Biomed. Eng.28(8), 934–944 (2000). [CrossRef] [PubMed]
  32. D. Streeter, “Gross Morphology and Fiber Geometry of the Heart,” in Handbook of Physiology: The Cardiovascular System, B. Bethesda, ed. (American Physiology Society, 1979), pp. 61–112.
  33. D. U. J. Keller, Multiscale Modeling of the Ventricles: From Cellular Electrophysiology to Body Surface Electrocardiograms (KIT Scientific Publishing, 2011).
  34. G. Seemann, D. U. J. Keller, D. L. Weiss, and O. Dossel, “Modeling human ventricular geometry and fiber orientation based on diffusion tensor MRI,” in Com. Card,2006, 2006), 801–804.
  35. W. J. Karlon, J. W. Covell, A. D. McCulloch, J. J. Hunter, and J. H. Omens, “Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras,” Anat. Rec.252(4), 612–625 (1998). [CrossRef] [PubMed]
  36. M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE, Trans. Sig. Pro50(2), 174–188 (2002). [CrossRef]
  37. F. Zhang, E. R. Hancock, C. Goodlett, and G. Gerig, “Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling,” Med. Image Anal.13(1), 5–18 (2009). [CrossRef] [PubMed]
  38. S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability (Cambridge University Press, 2009), p. 622.
  39. W. Yin and E. X. Wu, “MR investigation of the coupling between myocardial fiber architecture and cardiac contraction,” in EMBC 2009, 2009), 4395–4398.
  40. C. Mekkaoui, S. Nielles-Vallespin, P. Gatehouse, M. Jackowski, D. Firmin, and D. Sosnovik, “Diffusion MRI tractography of the human heart In Vivo at end-diastole and end-systole,” J. Cardiovasc. Magn. Reson.14(Suppl 1), O49 (2012). [CrossRef]
  41. P. A. Doevendans, M. J. Daemen, E. D. de Muinck, and J. F. Smits, “Cardiovascular phenotyping in mice,” Cardiovasc. Res.39(1), 34–49 (1998). [CrossRef] [PubMed]
  42. S. Konno and S. Sakakibara, “ENdo-myocardial biopsy,” Dis. Chest44(4), 345–350 (1963). [CrossRef] [PubMed]
  43. H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt.16(11), 110505 (2011). [CrossRef] [PubMed]
  44. C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. Arruda, “First in vivo Real-Time Imaging of Endocardial RF Ablation by Optical Coherence Tomography ” J. In. Card. R. M 2(2011).
  45. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009). [CrossRef] [PubMed]
  46. H.-C. Park, C. Song, M. Kang, Y. Jeong, and K.-H. Jeong, “Forward imaging OCT endoscopic catheter based on MEMS lens scanning,” Opt. Lett.37(13), 2673–2675 (2012). [CrossRef] [PubMed]
  47. B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MP4 (3352 KB)     
» Media 2: MP4 (3032 KB)     
» Media 3: MP4 (2333 KB)     
» Media 4: MP4 (2565 KB)     
» Media 5: MP4 (2055 KB)     
» Media 6: MP4 (1607 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited