OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2179–2186

Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon

Praveen C. Ashok, Bavishna B. Praveen, Nicola Bellini, Andrew Riches, Kishan Dholakia, and C. Simon Herrington  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 10, pp. 2179-2186 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1810 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a multimodal optical approach using both Raman spectroscopy and optical coherence tomography (OCT) in tandem to discriminate between colonic adenocarcinoma and normal colon. Although both of these non-invasive techniques are capable of discriminating between normal and tumour tissues, they are unable individually to provide both the high specificity and high sensitivity required for disease diagnosis. We combine the chemical information derived from Raman spectroscopy with the texture parameters extracted from OCT images. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These data demonstrate that multimodal optical analysis has the potential to achieve accurate non-invasive cancer diagnosis.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.4730) Medical optics and biotechnology : Optical pathology
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(180.5655) Microscopy : Raman microscopy

ToC Category:
Multimodal Imaging

Original Manuscript: July 29, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: September 9, 2013
Published: September 16, 2013

Praveen C. Ashok, Bavishna B. Praveen, Nicola Bellini, Andrew Riches, Kishan Dholakia, and C. Simon Herrington, "Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon," Biomed. Opt. Express 4, 2179-2186 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. R. UK, “Bowel cancer Key Facts,” (Cancer Research UK, 2013), http://www.cancerresearchuk.org/cancer-info/cancerstats/keyfacts/bowel-cancer/#Bowel , Accessed 27/05/2013, 2013.
  2. C. Scalfi-Happ, M. Udart, C. Hauser, and A. Rück, “Investigation of lipid bodies in a colon carcinoma cell line by confocal Raman microscopy,” Med. Laser Appl.26(4), 152–157 (2011). [CrossRef]
  3. N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss.126, 141–157, discussion 169–183 (2004). [CrossRef] [PubMed]
  4. A. Mahadevan-Jansen and R. R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt.1(1), 31–70 (1996). [CrossRef] [PubMed]
  5. M. S. Feld, R. Manoharan, J. Salenius, J. Orensteincarndona, T. J. Romer, J. F. Brennan, R. Dasari, and Y. Wang, “Detection and characterization of human tissue lesions with near infrared Raman spectroscopy,” P Soc Photo-Opt Ins 2388, 99–104 (1995).
  6. E. Widjaja, W. Zheng, and Z. W. Huang, “Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines,” Int. J. Oncol.32(3), 653–662 (2008). [PubMed]
  7. P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem.387(5), 1643–1648 (2007). [CrossRef] [PubMed]
  8. S. A. Boppart, “Optical coherence tomography - Principles applications and advances,” Minerva Biotecnol16, 211–237 (2004).
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  10. M. Bhattacharjee, P. C. Ashok, K. D. Rao, S. K. Majumder, Y. Verma, and P. K. Gupta, “Binary tissue classification studies on resected human breast tissues using optical coherence tomography images,” J Innovat. Opt. Health Sci.4(01), 59–66 (2011). [CrossRef]
  11. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003). [CrossRef] [PubMed]
  12. C. A. Patil, N. Bosschaart, M. D. Keller, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Combined Raman spectroscopy and optical coherence tomography device for tissue characterization,” Opt. Lett.33(10), 1135–1137 (2008). [CrossRef] [PubMed]
  13. J. W. Evans, R. J. Zawadzki, R. Liu, J. W. Chan, S. M. Lane, and J. S. Werner, “Optical coherence tomography and Raman spectroscopy of the ex-vivo retina,” J Biophotonics2(6-7), 398–406 (2009). [CrossRef] [PubMed]
  14. K. M. Khan, H. Krishna, S. K. Majumder, K. D. Rao, and P. K. Gupta, “Depth-sensitive Raman spectroscopy combined with optical coherence tomography for layered tissue analysis,” J. Biophot. (2013).
  15. M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt.14(5), 054031 (2009). [CrossRef] [PubMed]
  16. N. Krstajić, C. T. A. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” J. Biomed. Opt.17(7), 071305 (2012). [CrossRef] [PubMed]
  17. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  18. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  19. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt.38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  20. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc.57(11), 1363–1367 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited