OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2187–2195

Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber

K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian  »View Author Affiliations

Biomedical Optics Express, Vol. 4, Issue 10, pp. 2187-2195 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate label-free multi-photon imaging of biological samples using a compact Er3+-doped femtosecond fiber laser mode-locked by a single-walled carbon nanotube (CNT). These compact and low cost lasers have been developed by various groups but they have not been exploited for multiphoton microscopy. Here, it is shown that various multiphoton imaging modalities (e.g. second harmonic generation (SHG), third harmonic generation (THG), two-photon excitation fluorescence (TPEF), and three-photon excitation fluorescence (3PEF)) can be effectively performed on various biological samples using a compact handheld CNT mode-locked femtosecond fiber laser operating in the telecommunication window near 1560nm. We also show for the first time that chlorophyll fluorescence in plant leaves and diatoms can be observed using 1560nm laser excitation via three-photon absorption.

© 2013 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(170.5810) Medical optics and biotechnology : Scanning microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:

Original Manuscript: July 15, 2013
Revised Manuscript: August 6, 2013
Manuscript Accepted: August 21, 2013
Published: September 17, 2013

K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, "Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber," Biomed. Opt. Express 4, 2187-2195 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000). [CrossRef] [PubMed]
  3. W. R. Zipfel, R. M. Williams, W. W. Webb, “Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  4. F. Helmchen, W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005). [CrossRef] [PubMed]
  5. E. E. Hoover, J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013). [CrossRef]
  6. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, M. Müller, “Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source,” Appl. Opt. 38(36), 7393–7397 (1999). [CrossRef] [PubMed]
  7. F. W. Wise,, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1412–1421 (2012). [CrossRef]
  8. S. Tang, J. Liu, T. B. Krasieva, Z. Chen, B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 0001;14 (3):030508–030508–3. [CrossRef]
  9. G. Liu, K. Kieu, F. W. Wise, Z. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics 4(1-2), 34–39 (2011). [CrossRef] [PubMed]
  10. J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14(21), 9825–9831 (2006). [CrossRef] [PubMed]
  11. K. Wang, T.-M. Liu, J. Wu, N. G. Horton, C. P. Lin, C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express 3(9), 1972–1977 (2012). [CrossRef] [PubMed]
  12. A. V. Shubin, I. A. Bufetov, M. A. Melkumov, S. V. Firstov, O. I. Medvedkov, V. F. Khopin, A. N. Guryanov, E. M. Dianov, “Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22 W,” Opt. Lett. 37(13), 2589–2591 (2012). [CrossRef] [PubMed]
  13. G. Androz, M. Bernier, D. Faucher, R. Vallée, “2.3 W single transverse mode thulium-doped ZBLAN fiber laser at 1480 nm,” Opt. Express 16(20), 16019–16031 (2008). [CrossRef] [PubMed]
  14. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm,” Opt. Lett. 29(4), 334–336 (2004). [CrossRef] [PubMed]
  15. K. Murari, Y. Zhang, S. Li, Y. Chen, M. J. Li, X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett. 36(7), 1299–1301 (2011). [CrossRef] [PubMed]
  16. S. Yazdanfar, C. Joo, C. Zhan, M. Y. Berezin, W. J. Akers, S. Achilefu, “Multiphoton microscopy with near infrared contrast agents,” J. Biomed. Opt. 15(3), 030505 (2010). [CrossRef] [PubMed]
  17. M. E. Fermann, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18(11), 894 (1993). [CrossRef] [PubMed]
  18. K. Tamura, E. P. Ippen, H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett. 67(2), 158 (1995). [CrossRef]
  19. M. Guina, N. Xiang, O. G. Okhotnikov, “Stretched-pulse fiber lasers based on semiconductor saturable absorber mirrors,” Appl. Phys. B 74(9), S193–S200 (2002). [CrossRef]
  20. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]
  21. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30(4), 427–447 (2012). [CrossRef]
  22. K. Kieu, M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007). [CrossRef] [PubMed]
  23. K. Kieu, J. Jones, N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22(20), 1521–1523 (2010). [CrossRef]
  24. T. H. Wu, K. Kieu, N. Peyghambarian, R. J. Jones, “Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design,” Opt. Express 19(6), 5313–5318 (2011). [CrossRef] [PubMed]
  25. K. Kieu, A. Evans, J. Klein, J. Barton, N. Peyghambarian, “Ultrahigh resolution all-reflective OCT system with a compact fiber-based supercontinuum source,” J. Biomed. Opt. 16, 106004 (2011), doi:. [CrossRef] [PubMed]
  26. R. Aviles-Espinosa, S. I. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt. 15(4), 046020 (2010). [CrossRef] [PubMed]
  27. D. Yelin, Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999). [CrossRef] [PubMed]
  28. G. O. Clay, A. C. Millard, C. B. Schaffer, J. Aus-der-Au, P. S. Tsai, J. A. Squier, D. Kleinfeld, “Spectroscopy of third harmonic generation: Evidence for resonances in model compounds and ligated hemoglobin,” J. Opt. Soc. Am. B 23(5), 932–950 (2006). [CrossRef]
  29. M. J. Farrar, F. W. Wise, J. R. Fetcho, and C. B. Schaffer, “In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy,” Biophysical Journal 100, 1362–1371, (2011) ISSN 0006–3495, . [CrossRef]
  30. J.-X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  31. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  32. K. Kieu, B. G. Saar, G. R. Holtom, F. W. Wise, X. S. Xie, “High power all-fiber picosecond laser system for coherent Raman microscopy,” Opt. Lett. 34, 2051–2053 (2009).
  33. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012). [CrossRef] [PubMed]
  34. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012). [CrossRef] [PubMed]
  35. G. H. Krause, E. Weis, “Chlorophyll fluorescence and photosynthesis: the basis,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42(1), 313–349 (1991). [CrossRef]
  36. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  37. M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009). [CrossRef] [PubMed]
  38. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer & C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Published online: 20 January 2013 | doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4918 KB)     
» Media 2: AVI (3084 KB)     
» Media 3: AVI (2834 KB)     
» Media 4: AVI (3519 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited