OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2224–2230

A least-squares fixed-point iterative algorithm for multiple illumination photoacoustic tomography

Tyler Harrison, Peng Shao, and Roger J. Zemp  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 2224-2230 (2013)
http://dx.doi.org/10.1364/BOE.4.002224


View Full Text Article

Enhanced HTML    Acrobat PDF (1012 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical absorption of tissues provides important information for clinical and pre-clinical studies. The challenge in recovering optical absorption from photoacoustic images is that the measured pressure depends on absorption and local fluence. One reconstruction approach uses a fixed-point iterative technique based on minimizing the mean-squared error combined with modeling of the light source to determine optical absorption. With this technique, convergence is not guaranteed even with an accurate measure of optical scattering. In this work we demonstrate using simulations that a new multiple illumination least squares fixed-point iteration algorithm improves convergence - even with poor estimates of optical scattering.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.3010) Image processing : Image reconstruction techniques
(110.5120) Imaging systems : Photoacoustic imaging
(110.6960) Imaging systems : Tomography

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: July 3, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 11, 2013
Published: September 24, 2013

Citation
Tyler Harrison, Peng Shao, and Roger J. Zemp, "A least-squares fixed-point iterative algorithm for multiple illumination photoacoustic tomography," Biomed. Opt. Express 4, 2224-2230 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-2224


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E67, 056605 (2003). [CrossRef]
  2. L. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quant.14, 171–179 (2008). [CrossRef]
  3. Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt.15, 021311 (2010). [CrossRef] [PubMed]
  4. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17, 061202 (2012). [CrossRef] [PubMed]
  5. G. Bal and K. Ren, “Multi-source quantitative photoacoustic tomography in a diffusive regime,” Inverse Probl.27, 075003 (2011). [CrossRef]
  6. J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E71, 031912 (2005). [CrossRef]
  7. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett.88, 231101 (2006). [CrossRef]
  8. B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc. Am. A25, 2347–2356 (2008). [CrossRef]
  9. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt.45, 1866–1875 (2006). [CrossRef] [PubMed]
  10. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett.32, 2556–2558 (2007). [CrossRef] [PubMed]
  11. T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett.95, 013703 (2009). [CrossRef]
  12. B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A26, 443–455 (2009). [CrossRef]
  13. G. Bal and K. Ren, “On multi-spectral quantitative photoacoustic tomography in diffusive regime,” Inverse Probl.28, 025010 (2012). [CrossRef]
  14. G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inverse Probl.26, 085010 (2010). [CrossRef]
  15. R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt.49, 3566–3572 (2010). [CrossRef] [PubMed]
  16. P. Shao, B. Cox, and R. J. Zemp, “Estimating optical absorption, scattering, and grueneisen distributions with multiple-illumination photoacoustic tomography,” Appl. Opt.50, 3145–3154 (2011). [CrossRef] [PubMed]
  17. P. Shao, T. Harrison, and R. J. Zemp, “Iterative algorithm for multiple illumination photoacoustic tomography (mipat) using ultrasound channel data,” Biomed. Opt. Express3, 3240–3249 (2012). [CrossRef] [PubMed]
  18. H. Gao, S. Osher, and H. Zhao, “Quantitative photoacoustic tomography,” in “Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographiess,” vol. 2035 of Lecture Notes in Mathematics: Mathematical Biosciences Subseries, H. Ammari, ed. (Springer-Verlag, Berlin, 2011), pp. 131–158.
  19. K. Ren, H. Gao, and H. Zhao, “A Hybrid Reconstruction Method for Quantitative PAT,” SIAM J. Imaging Sci.6, 32–55 (2013). [CrossRef]
  20. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15, R41 (1999). [CrossRef]
  21. B. Cox, T. Tarvainen, and S. Arridge, “Multiple illumination quantitative photoacoustic tomography using transport and diffusion models,” in “Tomography and Inverse Transport Theory,” G. Bal, D. Finch, J. Schotland, P. Kuchment, and P. Stefanov, eds. (American Mathematical Society, Providence, RI, USA, 2012), pp. 1–12.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited