OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2247–2256

Axial response of high-resolution microendoscopy in scattering media

Michael H. Koucky and Mark C. Pierce  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 2247-2256 (2013)
http://dx.doi.org/10.1364/BOE.4.002247


View Full Text Article

Enhanced HTML    Acrobat PDF (1456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-resolution microendoscopy (HRME) uses epi-fluorescence imaging with a coherent fiber-optic bundle to enable in vivo examination of cellular morphology. While the HRME platform has recently gained popularity as a simple alternative to confocal endomicroscopy, the axial response of HRME in thick, scattering tissue has yet to be described quantitatively. These details are important because when analyzing images collected by HRME, out-of-focus light may affect the accuracy of quantitative parameters such as nuclear-to-cytoplasm ratio, which has been proposed as a diagnostic indicator of dysplasia or cancer. In this study we investigated the imaging properties of the HRME system by using phantoms simulating scattering tissue with fluorescently labeled nuclei. We directly compared HRME imaging with confocal endomicroscopy in phantoms and in vivo human tissue. HRME images defocused (deep) objects with apparent diameters and intensity levels that are in agreement with a simple geometric model. Out-of-focus nuclei contribute a relatively low, uniform background level to images which neither leads to the erroneous appearance of large nuclei from deep layers, nor prevents accurate imaging of superficial nuclei with high contrast.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(110.0110) Imaging systems : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(290.0290) Scattering : Scattering

ToC Category:
Endoscopes, Catheters and Micro-Optics

History
Original Manuscript: June 17, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 30, 2013
Published: September 25, 2013

Virtual Issues
Novel Techniques in Microscopy (2013) Biomedical Optics Express

Citation
Michael H. Koucky and Mark C. Pierce, "Axial response of high-resolution microendoscopy in scattering media," Biomed. Opt. Express 4, 2247-2256 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-2247


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. K. Wang, R. E. Sampliner, and Practice Parameters Committee of the American College of Gastroenterology, “Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus,” Am. J. Gastroenterol.103(3), 788–797 (2008). [CrossRef] [PubMed]
  2. M. Goetz and R. Kiesslich, “Advances of endomicroscopy for gastrointestinal physiology and diseases,” Am. J. Physiol. Gastrointest. Liver Physiol.298(6), G797–G806 (2010). [CrossRef] [PubMed]
  3. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc.62(5), 686–695 (2005). [CrossRef] [PubMed]
  4. P. S.-P. Thong, M. Olivo, K.-W. Kho, W. Zheng, K. Mancer, M. Harris, and K.-C. Soo, “Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity,” J. Biomed. Opt.12(1), 014007 (2007). [CrossRef] [PubMed]
  5. S. Astner, S. Dietterle, N. Otberg, H.-J. Röwert-Huber, E. Stockfleth, and J. Lademann, “Clinical applicability of in vivo fluorescence confocal microscopy for noninvasive diagnosis and therapeutic monitoring of nonmelanoma skin cancer,” J. Biomed. Opt.13(1), 014003 (2008). [CrossRef] [PubMed]
  6. J. Tan, M. A. Quinn, J. M. Pyman, P. M. Delaney, and W. J. McLaren, “Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy,” BJOG116(12), 1663–1670 (2009). [CrossRef] [PubMed]
  7. K. B. Dunbar, P. Okolo, E. Montgomery, and M. I. Canto, “Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial,” Gastrointest. Endosc.70(4), 645–654 (2009). [CrossRef] [PubMed]
  8. M. B. Wallace, P. Sharma, C. Lightdale, H. Wolfsen, E. Coron, A. Buchner, M. Bajbouj, A. Bansal, A. Rastogi, J. Abrams, J. E. Crook, and A. Meining, “Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett’s esophagus with probe-based confocal laser endomicroscopy,” Gastrointest. Endosc.72(1), 19–24 (2010). [CrossRef] [PubMed]
  9. P. M. Lane, S. Lam, A. McWilliams, J. C. Leriche, M. W. Anderson, and C. E. Macaulay, “Confocal fluorescence microendoscopy of bronchial epithelium,” J. Biomed. Opt.14(2), 024008 (2009). [CrossRef] [PubMed]
  10. A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202, 90.e1–9 (2010). [CrossRef]
  11. T. Dromard, V. Ravaine, S. Ravaine, J.-L. Lévêque, and N. Sojic, “Remote in vivo imaging of human skin corneocytes by means of an optical fiber bundle,” Rev. Sci. Instrum.78(5), 053709 (2007). [CrossRef] [PubMed]
  12. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express15(25), 16413–16423 (2007). [CrossRef] [PubMed]
  13. T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc.68(4), 737–744 (2008). [CrossRef] [PubMed]
  14. W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer101(12), 2015–2022 (2009). [CrossRef] [PubMed]
  15. K. J. Rosbach, D. Shin, T. J. Muldoon, M. A. Quraishi, L. P. Middleton, K. K. Hunt, F. Meric-Bernstam, T.-K. Yu, R. R. Richards-Kortum, and W. Yang, “High-resolution fiber optic microscopy with fluorescent contrast enhancement for the identification of axillary lymph node metastases in breast cancer: a pilot study,” Biomed. Opt. Express1(3), 911–922 (2010). [CrossRef] [PubMed]
  16. T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck34(3), 305–312 (2012). [CrossRef] [PubMed]
  17. S. F. Elahi, S. J. Miller, B. Joshi, and T. D. Wang, “Targeted imaging of colorectal dysplasia in living mice with fluorescence microendoscopy,” Biomed. Opt. Express2(4), 981–986 (2011). [CrossRef] [PubMed]
  18. M. C. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” JOVE 47; http://www.jove.com/index/Details.stp?ID=2306 (2011). [CrossRef]
  19. N. Mufti, Y. Kong, J. D. Cirillo, and K. C. Maitland, “Fiber optic microendoscopy for preclinical study of bacterial infection dynamics,” Biomed. Opt. Express2(5), 1121–1134 (2011). [CrossRef] [PubMed]
  20. R. Regunathan, J. Woo, M. C. Pierce, A. D. Polydorides, M. Raoufi, S. Roayaie, M. Schwartz, D. Labow, D. Shin, R. Suzuki, M. S. Bhutani, L. G. Coghlan, R. Richards-Kortum, S. Anandasabapathy, and M. K. Kim, “Feasibility and preliminary accuracy of high-resolution imaging of the liver and pancreas using FNA compatible microendoscopy (with video),” Gastrointest. Endosc.76(2), 293–300 (2012). [CrossRef] [PubMed]
  21. P. M. Vila, C. W. Park, M. C. Pierce, G. H. Goldstein, L. Levy, V. V. Gurudutt, A. D. Polydorides, J. H. Godbold, M. S. Teng, E. M. Genden, B. A. Miles, S. Anandasabapathy, A. M. Gillenwater, R. Richards-Kortum, and A. G. Sikora, “Discrimination of benign and neoplastic mucosa with a high-resolution microendoscope (HRME) in head and neck cancer,” Ann. Surg. Oncol.19(11), 3534–3539 (2012). [CrossRef] [PubMed]
  22. W. Göbel, D. Brucker, Y. Kienast, A. Johansson, G. Kniebühler, A. Rühm, S. Eigenbrod, S. Fischer, M. Goetz, F.-W. Kreth, A. Ehrhardt, H. Stepp, K.-M. Irion, and J. Herms, “Optical needle endoscope for safe and precise stereotactically guided biopsy sampling in neurosurgery,” Opt. Express20(24), 26117–26126 (2012). [CrossRef] [PubMed]
  23. P. Shao, W. Shi, P. Hajireza, and R. J. Zemp, “Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging,” J. Biomed. Opt.17(7), 076024 (2012). [CrossRef] [PubMed]
  24. R. A. Wall and J. K. Barton, “Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope,” J. Biomed. Opt.17(8), 086003 (2012). [CrossRef] [PubMed]
  25. M. C. Pierce, P. M. Vila, A. D. Polydorides, R. Richards-Kortum, and S. Anandasabapathy, “Low-cost endomicroscopy in the esophagus and colon,” Am. J. Gastroenterol.106(9), 1722–1724 (2011). [CrossRef] [PubMed]
  26. M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.)5(6), 801–809 (2012). [CrossRef] [PubMed]
  27. M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS ONE7(9), e44924 (2012). [CrossRef] [PubMed]
  28. M. C. Pierce, Y. Y. Guan, M. K. Quinn, X. Zhang, W.-H. Zhang, Y.-L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.)5(11), 1273–1279 (2012). [CrossRef] [PubMed]
  29. M. Subbarao and G. Surya, “Depth from defocus: A spatial domain approach,” Int. J. Comput. Vis.13(3), 271–294 (1994). [CrossRef]
  30. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005). [CrossRef] [PubMed]
  31. A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A, Pure Appl. Opt.6(7), 725–735 (2004). [CrossRef]
  32. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol.42(10), 1971–1979 (1997). [CrossRef] [PubMed]
  33. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009). [CrossRef] [PubMed]
  34. S. El Hallani, C. F. Poh, C. E. Macaulay, M. Follen, M. Guillaud, and P. Lane, “Ex vivo confocal imaging with contrast agents for the detection of oral potentially malignant lesions,” Oral Oncol.49(6), 582–590 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited