OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 10 — Oct. 1, 2013
  • pp: 2257–2268

Non-contact in vivo diffuse optical imaging using a time-gated scanning system

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 10, pp. 2257-2268 (2013)
http://dx.doi.org/10.1364/BOE.4.002257


View Full Text Article

Enhanced HTML    Acrobat PDF (2944 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design and first in vivo tests of a novel non-contact scanning imaging system for time-domain near-infrared spectroscopy. Our system is based on a null source-detector separation approach and utilizes polarization-selective detection and a fast-gated single-photon avalanche diode to record late photons only. The in-vivo tests included the recording of hemodynamics during arm occlusion and two brain activation tasks. Localized and non-localized changes in oxy- and deoxyhemoglobin concentration were detected for motor and cognitive tasks, respectively. The tests demonstrate the feasibility of non-contact imaging of absorption changes in deeper tissues.

© 2013 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Diffuse Optical Imaging

History
Original Manuscript: August 7, 2013
Revised Manuscript: September 21, 2013
Manuscript Accepted: September 22, 2013
Published: September 26, 2013

Citation
M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, "Non-contact in vivo diffuse optical imaging using a time-gated scanning system," Biomed. Opt. Express 4, 2257-2268 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-10-2257


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007). [CrossRef] [PubMed]
  2. J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009). [CrossRef] [PubMed]
  3. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012). [CrossRef] [PubMed]
  4. O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010). [CrossRef] [PubMed]
  5. H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005). [PubMed]
  6. M. A. Khalil, H. K. Kim, I.-K. Kim, M. Flexman, R. Dayal, G. Shrikhande, and A. H. Hielscher, “Dynamic diffuse optical tomography imaging of peripheral arterial disease,” Biomed. Opt. Express3(9), 2288–2298 (2012). [CrossRef] [PubMed]
  7. I. K. Haitsma and A. I. R. Maas, “Monitoring cerebral oxygenation in traumatic brain injury,” Prog. Brain Res.161, 207–216 (2007). [CrossRef] [PubMed]
  8. http://clinicaltrials.gov/ .
  9. J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003). [CrossRef] [PubMed]
  10. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009). [CrossRef] [PubMed]
  11. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009). [CrossRef]
  12. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009). [CrossRef] [PubMed]
  13. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010). [CrossRef] [PubMed]
  14. X. Wang, Z. Zhao, W. Becker, T. Troxler, and B. Chance, “Flying spot remote sensing of ICG kinetics of undeformed tissues,” Proc. SPIE5693, 28–33 (2005). [CrossRef]
  15. R. A. Bolt and J. J. Ten Bosch, “Method for measuring position-dependent volume reflection,” Appl. Opt.32(24), 4641–4645 (1993). [CrossRef] [PubMed]
  16. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt.35(13), 2304–2314 (1996). [CrossRef] [PubMed]
  17. M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011). [CrossRef] [PubMed]
  18. A. A. Stratonnikov, N. V. Ermishova, and V. B. Loschenov, “Influence of red laser irradiation on hemoglobin oxygen saturation and blood volume in human skin in vivo,” Proc. SPIE4257, 57–64 (2001). [CrossRef]
  19. M. Niwayama, H. Murata, and S. Shinohara, “Noncontact tissue oxygenation measurement using near-infrared spectroscopy,” Rev. Sci. Instrum.77(7), 073102 (2006). [CrossRef]
  20. T. Funane, H. Atsumori, A. Suzuki, and M. Kiguchi, “Noncontact brain activity measurement system based on near-infrared spectroscopy,” Appl. Phys. Lett.96(12), 123701 (2010). [CrossRef]
  21. T. L. Becker, A. D. Paquette, K. R. Keymel, B. W. Henderson, and U. Sunar, “Monitoring blood flow responses during topical ALA-PDT,” Biomed. Opt. Express2(1), 123–130 (2011). [CrossRef] [PubMed]
  22. Y. Lin, L. He, Y. Shang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt.17(1), 010502 (2012). [CrossRef] [PubMed]
  23. T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013). [CrossRef] [PubMed]
  24. I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: preliminary study for functional brain mapping,” J. Biomed. Opt.11(5), 054006 (2006). [CrossRef] [PubMed]
  25. P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010). [CrossRef] [PubMed]
  26. P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012). [CrossRef]
  27. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005). [CrossRef] [PubMed]
  28. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008). [CrossRef] [PubMed]
  29. A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010). [CrossRef]
  30. A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011). [CrossRef] [PubMed]
  31. E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012). [CrossRef] [PubMed]
  32. A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express4(8), 1351–1365 (2013). [CrossRef] [PubMed]
  33. L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013). [CrossRef]
  34. M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012). [CrossRef] [PubMed]
  35. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002). [CrossRef] [PubMed]
  36. G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013). [CrossRef]
  37. A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012). [CrossRef]
  38. L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006). [CrossRef] [PubMed]
  39. W. Becker, The bh TCSPC Handbook (Becker & Hickl GmbH, 2012).
  40. Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol.42(6), 1009–1022 (1997). [CrossRef] [PubMed]
  41. M. Cope, The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant, PhD Thesis, University College London (1991).
  42. M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013). [CrossRef]
  43. R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010). [CrossRef] [PubMed]
  44. E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012). [CrossRef] [PubMed]
  45. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012). [CrossRef] [PubMed]
  46. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005). [CrossRef] [PubMed]
  47. D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908, 662908-7 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited