OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2284–2295

Feasibility study of brain tumor delineation using immunolabeled gold nanorods

Kevin Seekell, Spencer Lewis, Christy Wilson, Shuqin Li, Gerald Grant, and Adam Wax  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2284-2295 (2013)
http://dx.doi.org/10.1364/BOE.4.002284


View Full Text Article

Enhanced HTML    Acrobat PDF (1592 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Effective treatment of patients with malignant brain tumors requires surgical resection of a high percentage of the bulk tumor. Surgeons require a method that enables delineation of tumor margins, which are not visually distinct by eye. In this study, the feasibility of using gold nanorods (GNRs) for this purpose is evaluated. Anti-Epidermal Growth Factor Receptor (anti-EGFR) conjugated GNRs are used to label human xenograft glioblastoma multiforme (GBM) tumors embedded within slices of brain tissues from healthy nude mice. The anti-EGFR GNRs exhibit enhanced absorption at red to near-infrared wavelengths, often referred to as the tissue optical window, where absorption from blood is minimal. To enable definition of molecular specificity and spatial accuracy of the label, the GNR absorption is compared with GFP fluorescence which is expressed by the GBM cells used here. This work demonstrates a simple but highly translational technique to classify normal and malignant brain tissue regions in open surgery applications using immunolabeled GNR contrast agents.

© 2013 Optical Society of America

OCIS Codes
(170.6930) Medical optics and biotechnology : Tissue
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nanotechnology and Plasmonics

History
Original Manuscript: June 17, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 24, 2013
Published: October 1, 2013

Virtual Issues
Optical Molecular Probes, Imaging, and Drug Delivery (2013) Biomedical Optics Express

Citation
Kevin Seekell, Spencer Lewis, Christy Wilson, Shuqin Li, Gerald Grant, and Adam Wax, "Feasibility study of brain tumor delineation using immunolabeled gold nanorods," Biomed. Opt. Express 4, 2284-2295 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2284


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. J. Ullrich and S. L. Pomeroy, “Pediatric brain tumors,” Neurol. Clin.21(4), 897–913 (2003). [CrossRef] [PubMed]
  2. D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet, B. W. Scheithauer, and P. Kleihues, “The 2007 WHO classification of tumours of the central nervous system,” Acta Neuropathol.114(2), 97–109 (2007). [CrossRef] [PubMed]
  3. Cancer - United States Cancer Statistics (USCS) Data - 2009 Cancer Types Grouped by Race and Et,” http://apps.nccd.cdc.gov/uscs/cancersbyraceandethnicity.aspx .
  4. N. R. Smoll, K. Schaller, and O. P. Gautschi, “Long-term survival of patients with glioblastoma multiforme (GBM),” J. Clin. Neurosci.20(5), 670–675 (2013). [CrossRef] [PubMed]
  5. P. Schmalz, M. Shen, and J. Park, “Treatment resistance mechanisms of malignant glioma tumor stem cells,” Cancers3(4), 621–635 (2011). [CrossRef]
  6. S. K. Ray, ed., Glioblastoma (Springer New York, 2010).
  7. G. E. Keles, B. Anderson, and M. S. Berger, “The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere,” Surg. Neurol.52(4), 371–379 (1999). [CrossRef] [PubMed]
  8. S. A. Maier, Plasmonics: Fundamentals and Applications (2007).
  9. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  10. K. Seekell, H. Price, S. Marinakos, and A. Wax, “Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis,” Methods56(2), 310–316 (2012). [CrossRef] [PubMed]
  11. K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011). [CrossRef] [PubMed]
  12. M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011). [CrossRef] [PubMed]
  13. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003). [PubMed]
  14. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev3(1-2), 146–158 (2009). [CrossRef]
  15. S. Kumar, J. Aaron, and K. Sokolov, “Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties,” Nat. Protoc.3(2), 314–320 (2008). [CrossRef] [PubMed]
  16. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res.41(12), 1721–1730 (2008). [CrossRef] [PubMed]
  17. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small1(3), 325–327 (2005). [CrossRef] [PubMed]
  18. R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chem. Soc. Rev.37(9), 1896–1908 (2008). [CrossRef] [PubMed]
  19. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  20. M. J. Crow, K. Seekell, and A. Wax, “Polarization mapping of nanoparticle plasmonic coupling,” Opt. Lett.36(5), 757–759 (2011). [CrossRef] [PubMed]
  21. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express13(7), 2668–2677 (2005). [CrossRef] [PubMed]
  22. M. D. Marmor, K. B. Skaria, and Y. Yarden, “Signal transduction and oncogenesis by ErbB/HER receptors,” Int. J. Radiat. Oncol. Biol. Phys.58(3), 903–913 (2004). [CrossRef] [PubMed]
  23. R. I. Nicholson, J. M. Gee, and M. E. Harper, “EGFR and cancer prognosis,” Eur. J. Cancer37(Suppl 4), S9–S15 (2001). [CrossRef] [PubMed]
  24. H. K. Gan, A. H. Kaye, and R. B. Luwor, “The EGFRvIII variant in glioblastoma multiforme,” J. Clin. Neurosci.16(6), 748–754 (2009). [CrossRef] [PubMed]
  25. D. M. Peereboom, D. R. Shepard, M. S. Ahluwalia, C. J. Brewer, N. Agarwal, G. H. J. Stevens, J. H. Suh, S. A. Toms, M. A. Vogelbaum, R. J. Weil, P. Elson, and G. H. Barnett, “Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme,” J. Neurooncol.98(1), 93–99 (2010). [CrossRef] [PubMed]
  26. M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” Am. J. Roentgenol.192(4), 1021–1028 (2009). [CrossRef] [PubMed]
  27. P. Puvanakrishnan, P. Diagaradjane, S. M. S. Kazmi, A. K. Dunn, S. Krishnan, and J. W. Tunnell, “Narrow band imaging of squamous cell carcinoma tumors using topically delivered anti-EGFR antibody conjugated gold nanorods,” Lasers Surg. Med.44(4), 310–317 (2012). [CrossRef] [PubMed]
  28. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003). [CrossRef]
  29. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett.7(6), 1591–1597 (2007). [CrossRef] [PubMed]
  30. A. J. Viera and J. M. Garrett, “Understanding interobserver agreement: the kappa statistic,” Fam. Med.37(5), 360–363 (2005). [PubMed]
  31. W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials29(12), 1912–1919 (2008). [CrossRef] [PubMed]
  32. K. Hynynen, N. McDannold, N. A. Sheikov, F. A. Jolesz, and N. Vykhodtseva, “Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications,” Neuroimage24(1), 12–20 (2005). [CrossRef] [PubMed]
  33. K. F. Bing, G. P. Howles, Y. Qi, M. L. Palmeri, and K. R. Nightingale, “Blood-brain barrier (BBB) disruption using a diagnostic ultrasound scanner and definity in mice,” Ultrasound Med. Biol.35(8), 1298–1308 (2009). [CrossRef] [PubMed]
  34. M.-R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J. P. Robinson, R. Bashir, N. J. Halas, and S. E. Clare, “A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors,” Nano Lett.7(12), 3759–3765 (2007). [CrossRef] [PubMed]
  35. T. A. Larson, P. P. Joshi, and K. Sokolov, “Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield,” ACS Nano6(10), 9182–9190 (2012). [CrossRef] [PubMed]
  36. A. K. Murthy, R. J. Stover, W. G. Hardin, R. Schramm, G. D. Nie, S. Gourisankar, T. M. Truskett, K. V. Sokolov, and K. P. Johnston, “Charged gold nanoparticles with essentially zero serum protein adsorption in undiluted fetal bovine serum,” JACS135(21), 7799–7802 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited