OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 4, Iss. 11 — Nov. 1, 2013
  • pp: 2296–2306

Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography

Barry Cense, Qiang Wang, Sangyeol Lee, Liang Zhao, Ann E. Elsner, Christoph K. Hitzenberger, and Donald T. Miller  »View Author Affiliations


Biomedical Optics Express, Vol. 4, Issue 11, pp. 2296-2306 (2013)
http://dx.doi.org/10.1364/BOE.4.002296


View Full Text Article

Enhanced HTML    Acrobat PDF (7648 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: We developed a method based on polarization-sensitive optical coherence tomography (PS-OCT) to quantify the double pass phase retardation (DPPR) induced by Henle fiber layer in three subjects. Measurements of the retina were performed at a mean wavelength of 840 nm using two polarization states that were perpendicular in a Poincaré sphere representation and phase retardation contributions from tissue layers above and below the Henle fiber layer were excluded using appropriately placed reference and measurement points. These points were semi-automatically segmented from intensity data. Using a new algorithm to determine DPPR, the Henle fiber layer in three healthy subjects aged 50-60 years showed elevated DPPR in a concentric ring about the fovea, with an average maximum DPPR for the three subjects of 22.0° (range: 20.4° to 23.0°) occurring at an average retinal eccentricity of 1.8° (range: 1.5° to 2.25°). Outside the ring, a floor of approximately 6.8° was measured, which we show can mainly be attributed to phase noise that is induced in the polarization states. We also demonstrate the method can determine fast axis orientation of the retardation, which is found consistent with the known radial pattern of Henle fibers.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.5755) Medical optics and biotechnology : Retina scanning
(170.6935) Medical optics and biotechnology : Tissue characterization
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Ophthalmology Applications

History
Original Manuscript: July 5, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 17, 2013
Published: October 1, 2013

Citation
Barry Cense, Qiang Wang, Sangyeol Lee, Liang Zhao, Ann E. Elsner, Christoph K. Hitzenberger, and Donald T. Miller, "Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography," Biomed. Opt. Express 4, 2296-2306 (2013)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-4-11-2296


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. B. K. Brink and G. J. van Blokland, “Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry,” J. Opt. Soc. Am. A5(1), 49–57 (1988). [CrossRef] [PubMed]
  2. A. Weber, A. E. Elsner, M. Miura, S. Kompa, and M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye (Lond.)21(3), 353–361 (2007). [CrossRef] [PubMed]
  3. D. A. VanNasdale, A. E. Elsner, T. Hobbs, and S. A. Burns, “Foveal phase retardation changes associated with normal aging,” Vision Res.51(21-22), 2263–2272 (2011). [CrossRef] [PubMed]
  4. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express12(24), 5940–5951 (2004). [CrossRef] [PubMed]
  5. S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express3(11), 2720–2732 (2012). [CrossRef] [PubMed]
  6. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27(18), 1610–1612 (2002). [CrossRef] [PubMed]
  7. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 121–125 (2004). [CrossRef] [PubMed]
  8. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45(8), 2606–2612 (2004). [CrossRef] [PubMed]
  9. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express15(5), 2421–2431 (2007). [CrossRef] [PubMed]
  10. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13(1), 014013 (2008). [CrossRef] [PubMed]
  11. J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, and H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci.53(8), 4380–4395 (2012). [CrossRef] [PubMed]
  12. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander III, and T. E. Milner, “Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT),” Opt. Express13(12), 4507–4518 (2005). [CrossRef] [PubMed]
  13. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophotonics1(2), 129–139 (2008). [CrossRef] [PubMed]
  14. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci.54(1), 72–84 (2013). [CrossRef] [PubMed]
  15. B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, and D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express17(24), 21634–21651 (2009). [CrossRef] [PubMed]
  16. C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000). [CrossRef] [PubMed]
  17. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express11(7), 782–793 (2003). [CrossRef] [PubMed]
  18. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express16(21), 16410–16422 (2008). [CrossRef] [PubMed]
  19. B. J. Lujan, A. Roorda, R. W. Knighton, and J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(3), 1486–1492 (2011). [CrossRef] [PubMed]
  20. A.N.S.I., “Z136.1 Safe use of lasers,” standard ANSI z136.1 (Laser Institute of America, New York, 2007).
  21. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.30(19), 2587–2589 (2005). [CrossRef] [PubMed]
  22. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express16(26), 21339–21354 (2008). [CrossRef] [PubMed]
  23. C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci.52(7), 3943–3954 (2011). [CrossRef] [PubMed]
  24. H. H. Ku, “Notes on use of propagation of error formulas,” J. Res. Nbs. C Eng. Inst.C70, 263–273 (1966).
  25. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14568–14585 (2011). [CrossRef] [PubMed]
  26. M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt.12(4), 041210 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (9191 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited